ITM Oxygen Technology for Gasification Applications

Vince White, John M. Repasky, Michael F. Carolan, Phillip A. Armstrong, VanEric E. Stein, Edward P. (Ted) Foster
Who is Air Products?

- **Merchant Gases**
 - Industrial, medical, and specialty gases supplied to wide array of applications

- **Tonnage Gases, Equipment and Energy**
 - Industrial gases supplied via large on-site facilities or pipeline systems; equipment; technologies to serve future industrial and energy markets

- **Electronics and Performance Materials**
 - Specialty and tonnage gases/chemicals, services and equipment supplied to electronics markets; performance chemical solutions for a variety of industries

FORTUNE 500 COMPANY ♦ $10.2 BILLION SALES FY13 ♦ SAFETY LEADER

- 21,600 Employees ♦ Operations over 50 countries ♦ Sales over 100 countries
- **Production Operator, Equipment & Plant Sales, Pipelines & Distribution**
Cryogenic Distillation is State-of-the-Art for Tonnage Oxygen

- Mature, reliable technology
- Energy intensive
- Requires 100’s of equilibrium stages
- Enables many applications
 - Gasification & IGCC
 - Oxy-combustion
 - Industrial
- Represents significant capital cost and power consumption
Why ITM Oxygen?

- Most oxygen is produced using cryogenic distillation
 - Cryogenic distillation is a mature technology

- Ceramic membranes have the potential to produce oxygen at **lower cost** and **less power requirement**, especially in applications where integration with power or high temperature processes is possible

- Other Benefits of ITM Oxygen
 - Less Water Use – can be as little as 50% of cryogenic ASU water use
 - Less Plot Area Required – approximately 50% less
 - Fuel Flexibility – natural gas, syngas, liquid fuels
 - Excellent integration capability with existing high temperature processes
 - Compact design reduces construction costs, easily meets height restrictions, increases overall mobility of the technology
What is ITM Oxygen?

A proprietary ceramic membrane to separate oxygen from air
- Inputs are high pressure air and heat/fuel
- Outputs are oxygen and power/steam

Unique technology gives high oxygen flux and selectivity and good integration with energy applications
Air Products’ ITM Technology

- **Ion Transport Membranes (ITM)** provide **Oxygen** at high-purity and high-flux
 - Non-porous mixed conducting ceramic membranes are 100% selective for oxygen
 - Material formulation is complex and dependent upon application
 - Multi-component metallic oxide structure incorporates oxygen ion vacancies
 - Operate at high temperature, typically greater than 700°C

- Started R&D in 1988
- Currently 90 U.S. Patents and global equivalents
 - Materials and catalysts
 - Membrane and module structures
 - Process cycles
 - Applications and integrations
- U.S. DOE Cooperative Program since 1998
ITM Oxygen: DOE Cooperative Program

- Phase 1: Technical Feasibility (0.1 TPD O₂)
- Phase 2: Prototype Testing (1 - 5 TPD O₂)

Current activity Phases 3 and 5 are being conducted simultaneously

- Phase 3: Intermediate Scale Testing (100 TPD O₂) – 12 MW IGCC
- Phase 4: Reaction Driven Membranes
- Phase 5: Ceramic Module Fabrication to Supply 2000 TPD O₂ Facility
- Planning Next Phase: Energy Scale Development (2000 TPD O₂)
 - equivalent 250 MW IGCC or 110 MW oxycombustion

Broad, multi-disciplinary team

[Logos of various companies and institutions, including GE Energy, NovelEdge, Ceramatec, EPR, ETS, Siemens, University of Pennsylvania, McDermott, and Williams International.]

© Air Products and Chemicals, Inc. 2014. All Rights Reserved
ITM Oxygen membranes are supported thin-film planar devices

- Very fast transport for oxygen, very compact
- Low ΔP on the air side

Oxygen flowing from air through dense membrane

Dense membrane (both sides)

Hot Compressed Air

Porous membrane support

Dense, slotted backbone

High-purity Oxygen Product

Spacer ring

One Membrane in Module

$\frac{1}{2}$-TPD module
Commercial size membrane modules

0.5 ton/day (13 Nm³/h) Stack

1 ton/day (26 Nm³/h) Stack
ITM Oxygen commercial modules continue to be tested in the 5 TPD SEP.
ITM Oxygen commercial modules continue to be tested in the 5 TPD SEP

Over 1000 Days of Operation

- Demonstrated >99% O_2 purity
- Demonstrated stable flux at target values
- Demonstrated pressure and temperature cycling
- Testing operations toward scale-up
- Continue testing of next-generation components

Recently relocated from Sparrows Point, Maryland to Convent, Louisiana, U.S.A.
Successfully tested two 1 TPD module stacks

- **Capacity demonstrated** at 0.7 to 1 TPD over 22 days
 - Modules had thicker membranes resulting in flux lower than typical
- Flow and temperature uniformity confirmed
Successfully tested two 1/2 TPD module stacks

- **Oxygen purity established at 99.9 mol% oxygen**
 - Initial 500 hours involved testing at various feed air oxygen concentrations

- **Repeatable performance during P & T cycling** demonstrates the ability of ceramic components to survive plant startups, shutdowns, and upsets
 - Pressure and temperature cycling tests involved complete depressurization and cooling to ambient conditions, followed by return to operating conditions
 - Oxygen purity and flux returned to baseline performance

- **Successful test of Auto-Shutoff Valve** with no adverse effect on neighboring module
Intermediate-Scale Test Unit (ISTU) is in start-up for operation in 2014

- **100-TPD** ITM Oxygen system integrated with hot gas expander to co-produce power
 - equivalent to 5 MW oxycoal or 12 MW IGCC

- Uses commercial design concepts to allow scale-up to the next test platform
 - vessel and internals housing large ITM module array
 - process controls
 - contaminant mitigation

- Provides test platform to generate design data for larger-scale plants (2,000 TPD)
Intermediate-Scale Test Unit (ISTU) Process Flow Diagram

Air → TSA → Exhaust

Fuel line or “hot” equip’t

O_{2} line or equip’t

“ambient” temp equip’t

© Air Products and Chemicals, Inc. 2014. All Rights Reserved
Intermediate-Scale Test Unit (ISTU) is in start-up for operation in 2014

ISTU is located adjacent to Air Products Air Separation Unit in Convent, LA, U.S.A.
ISTU ITM Oxygen Vessel
Air Products awarded $71.7 million award as part of the U.S. Recovery Act legislation

Ceramic Manufacturing Scale Up (Phase 5)

Tasks include:

• **Design, build, and operate a ceramic manufacturing facility to supply a 2000 TPD ITM Oxygen test unit**

• Supporting R&D in ceramic processing with emphasis on industrial carbon capture applications

• Conceptual and detailed engineering of ITM-based facilities for industrial carbon capture and for testing the ITM Oxygen technology at the 2000 TPD scale

CerFab: The ceramic manufacturing facility in Tooele near Salt Lake City, Utah, U.S.A.

Kilns installed in the ceramic manufacturing facility
Electric Power Research Institute (EPRI), Air Products, and WorleyParsons conducted coal-based power plant assessments: Oxy-coal combustion & IGCC with carbon capture

- Detailed engineering studies of large-scale power generation with carbon capture; conducted with input from power industry companies
- Compared ITM Oxygen with traditional cryogenic air separation units (ASUs) integrated into power plants
- Greenfield design basis; included discussions with boiler and turbine manufacturers

Reference publication: AIChE Spring Mtg, April/May 2013.
IGCC power plant with carbon capture

F-class GTs (2) 465 MWe (gross)

Reference publication: AIChE Spring Mtg, April/May 2013.
ITM Oxygen showed substantial benefits for F-class IGCC with CCS

- “Sweet spot” for IGCC at 87% CO₂ capture (regardless of air separation technology).
- ITM Oxygen showed 1.8%pts efficiency advantage.
- ITM Oxygen showed 38% increase in net power output, raising facility power production back above nominal combined cycle rating without carbon capture.

Equal # of	Equal gasifier loading	
Equal gasifier		
gasifiers (2)	(100%)	
Unit capital cost advantage	LCOE* Advantage	
12%	12%	
10%	8%	

* Levelized Cost of Electricity

Reference publication: AIChE Spring Mtg, April/May 2013.
ISTU and CerFab are critical steps to commercialize energy-scale ITM Oxygen
ITM Oxygen is well positioned to meet the needs of clean energy applications

• Gasification: IGCC, Polygen, CtL, XtL, decarbonized fuel; with or without CO₂ capture
• Oxy-combustion
• Clean energy with or without CO₂ capture
• Traditional energy-intensive industrial production
 - Steel, ferrous and non-ferrous metals
 - Cement, fertilizer, glass, pulp and paper
 - Chemicals, petrochemicals, fuels

We are actively pursuing early commercial opportunities
Acknowledgement

The authors gratefully acknowledge the contributions by the members of the ITM Oxygen team at Air Products, Siemens, Ceramatec, GE Energy Gasification, DOE, EPRI, Concepts NREC, NovelEdge, SOFCo EFS, Eltron Research, Becht Engineering, Williams International, Penn State University, and University of Pennsylvania.

This technology development has been supported in part by the U.S. Department of Energy under Contract No. FC26-98FT40343. The U.S. Government reserves for itself and others acting on its behalf a royalty-free, nonexclusive, irrevocable, worldwide license for Governmental purposes to publish, distribute, translate, duplicate, exhibit and perform this copyrighted paper.

Disclaimer

Neither Air Products and Chemicals, Inc. nor any of its contractors or subcontractors nor the United States Department of Energy, nor any person acting on behalf of either:

1. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

2. Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Department of Energy. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Department of Energy.
Thank you...
tell me more

ITM@airproducts.com
Phone: +1 610 481 4475
Fax: +1 610 706 7420