SAFETY AS A NEED/ENVIRONMENT PROTECTION AS A DEED

Ph. D. Stefan Kovacs - The Romanian National Research Institute for Occupational Safety,(INCDPM)Bucharest,e-mail:icpm00@softnet.ro Scientific Researcher Darabont Doru- The Romanian National Research Institute for Occupational Safety(INCDPM),Bucharest Marioara Apostol -INCDT COMOTI RA Scientific Researcher Camelia Creanga - INCDT COMOTI RA

> The paper presents the experience of a national (process industry) research institute in checking and balancing the safety needs and also the environmental needs into the design activity. This experience is interesting especially considering the transition towards a market economy and also the various research profiles (including military ones).

> The problem was that, taking into account the four main components of the Man-Machine system, the human operator, the task that is done, the machine and the work environment, to fine-tune them so as to obtain maximum safety and a reasonable degree of environmental protection.

In this spirit, a crosscheck assessment system was designed. This system assesses in a first step, the safety at the workplace, and in a second step the environment protection. Using this system, can be defined some specific crises, crises that can further be used at the development of various scenarios and mainly at the development of counter-strike measures. Such crises can be: human- environment crisis, task-environment crisis, machine-environment crisis and work environmentenvironment crisis. Training can diffuse the human-environment crisis, the taskenvironment by redesigning the task, the work environment-environment and machine, –environment crisis can be diffused by technical means.

Using statistic casualty and environment data, the paper shows that the work environment-environment crisis and the machine- environment crisis are the most serious and are determinant, if preventive actions are not quickly taken, to major accidents, with human losses and environment irreversible damage.

The developed assessment system is a quick, efficient and objective way to follow safety and environment together.

Keywords:

Safety assessment, environmental assessment, interactions, expert systems

GENERAL ASPECTS

In the design process the designer takes a great responsibility, especially for the future. The designed product will be manufactured, used and when its life cycle is over will be disposed . All these life stages involves safety risks for the manufacturer, user and disposer and also environmental risks for the work environment and also for the surrounding environment. The majority of research institutes in Romania are product developers, with design activities. Regarding this aspect, the paper presents the essential aspects of a multi-assessment system,

for safety and the environmental protection, which was developed jointly by the Romanian National Institute for Turboengines Research(INCDT COMOTI RA) and the Romanian National Institute for Safety Research (INCDPM)

THE SAFETY AND ENVIRONMENT ASSESSMENT PROCESS

The simplest way to make a safety assessment for a design is to use checklists so as to verify all the significant safety aspects of the design. A more complex method, named "Safety Integrator"¹ was developed and was presented at SafeCon, in Athens, in June 2000.

When assessing the safety in the design stage, the four components of the Man-Machine system(man, machine, task and environment) must be taken into account. Also, the three main stages of the future product or technology, manufacturing, usage and disposal must be analyzed.

The next figure presents the general schemata of the safety and environment assessment system

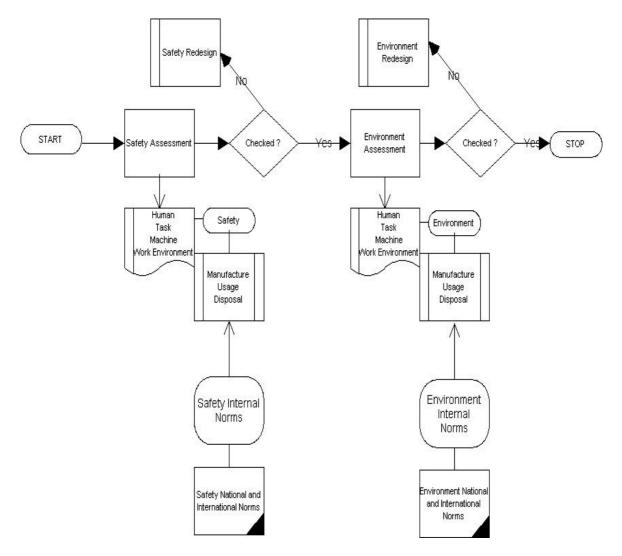


Figure 1.General schemata of the COMOTI assessment system

Undesired events are produced by interactions. The main goal in the safety assessment must be the human operator, so the interactions between various components must be analyzed from this point of view.

The general schemata of the safety assessment is presented in the figure 2

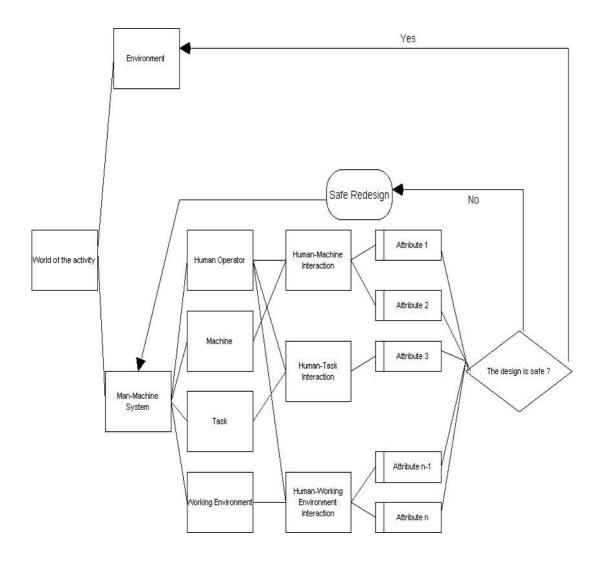


Figure 2. General schemata of the safety assessment process

In this research, the Human-Human and Human-Task interactions could be partially eliminated, because it is difficult for the designer to assess specific workers at the manufacturing point or specific users, without having the necessary data. So, regarding these interactions, the designer must develop the manufacturance specifications and also the user manual in accordance with the safety principles .The important safety problems for the designer are given by the Human-Machine and the Human-Working Environment interactions. These interactions are detailed in the following table.

Component	Manufacturing	Usage	Disposal	Observations
Human-	Manufacturing	Specific risks	Specific risks	Main goal: to
Machine	risks, design problems, manufacturer's training, experience and responsibilities	in usage, design problems, User's training, attitudes, skills, experience and responsibilities,	at disposal regarding human operators, Materials, Disposal training, attitudes, skills, responsibilities, experience and environmental attitudes	optimize the design of the product or technology so that the risks resulting from the Man- Machine interactions will be acceptable
Human- Working Environment	Manufacturing risks, design problems, manufacturer's environmental training and responsibilities, organization's environmental attitudes	Environmental training and Environmental attitudes	Disposable materials, Environmental training, environmental responsibilities, environmental attitudes	Main goal: to optimize the design of the product or technology so that the risks resulting from the man- working environment intractions will be acceptable and the working environment will be relatively safe

Table 1.a) Problem identification regarding Human-Machine and Human-Environment Interactions in the three main life stages of a product

Going further , we can eliminate the manufacturing phase from the table, considering that manufacturing engineers are responsible for this phase. A more detailed analysis will led us to the following tables:

Table 1.b) Problem identification regarding the Human-Machine(Product)Interaction in the
usage and disposal phases

Component	Usage	Disposal	Observations	
Human-	-Specific risks in	-Specific risks at	Main goal: to optimize the	
Machine	usage independent	disposal	design of the product or	
	from the design;	independent	technology so that the risks	
	-Risks caused by	from the design;	resulting from the Man-	
	design problems;	-Risks caused by	Machine (product)interactions	
	-Other risks;	the design,	will be acceptable.	
	-Ergonomic	involving	Risks can be identified using	
	aspects;	product	the risks list contained in EN	

Component	Usage	Disposal	Observations
	-User's training,	materials and	1050
	attitudes, skills,	disposal	
	experience and	technologies;	
	responsibilities,	-Disposal worker	
		training,	
		attitudes, skills,	
		responsibilities,	
		experience and	
		environmental	
		attitudes	

From this table, we could identify two main problems, regarding the human-product interaction at usage and disposal:

-assurance of safety at usage and disposal (including various types of risks and their prevention measures and also the human operator capacities regarding the product); -assurance of comfort in usage and disposal;

Table 1 c) Problem identification regarding the Human-Working Environment Interaction in
the usage and disposal phases;

Component	Usage	Disposal	Observations
Human-	-Specific risks	-Disposable	Main goal: to optimize the design
Working	independent	materials;	of the product or technology so
Environment	from the	-Environmental	that the risks resulting from the
	design;	training,	man-working environment
	-Design	environmental	interactions will be acceptable and
	problems	responsibilities,	the working environment will be
	concerning the	environmental	relatively safe
	work	attitudes	
	environment;		
	-		
	Environmental		
	training and		
	Environmental		
	attitudes		

From this table we could identify the two main problems that could be summarized as: -assurance of the safety regarding the work environment;

-assurance of the comfort regarding the work environment;

It is possible to see that in developing the safety assessment are taken into account some attributes that are described more detailed in the following table.

Table 2. Signific	ant attributes that	are influencing	the safety assessment

Principal attribute		Description			
Specific	risks	independent	from	the	Existing or very probable risks at
design					manufacturing, usage and disposal, risks
					that are influencing the human operator,

Principal attribute	Description
	excepting the design influence.
	For example: at the manufacturing
	process, the processed material is very
	breakable, splashing with debris
Risks caused by design problems and	Problems connected with ergonomic
design problems	design or with bad design
Training	Specific activity training so as to perform
	efficiently
Responsibilities	Responsibilities that must be assumed by
	the worker and his team to perform
	optimally the activity
Manufacturing risks	Risks implied by the manufacturing
	process
Usage risks	Risks implied by the usage of the product
Disposal risks	Risks implied by the disposal of the
	product
Materials	Component materials of the product;

The final result of the assessment will be the conclusion that the designed product or technology is safety compliant or the necessity to redesign it.

If the safety assessment is acceptable, the next step will be the environment assessment.

The environmental assessment will indicate if the product (or technology) is environmentally friendly or will lead to the definition of specific crisis scenarios, like those presented in the following table.

		e components-environment cri		
No	Name	Definition	Provoked by	Observations
1	Human-	Historically, the first crisis	-the intentional	Could be diffused by
	environment or	from the apparition of the	actions of the	:
	Environment-	mankind. The socio-	human operator	-training, for the part
	human crisis	technological crisis caused	upon the	regarding the active
		by the human operator	environment	actions of the human
		actions with direct or	-the accidental	operator;
		indirect results on the	actions of the	-using the Personnel
		environment; the crisis	human operator	Protective
		caused by environment	on the	Equipments or other
		manifestation against the	environment	specific protection
		human operator	-the environment	against the
			adverse	surrounding
			influence on the	environment;
			human operator	
2	Task-	The technological crisis	-the execution of	Could be diffused by
	environment or	1	specific tasks	redesigning the tasks
	environment ²	execution of specific tasks	with results on	or by specific
	task crisis	with impact on the	the environment	protection against

 Table 3. Man-Machine components-environment crisis scenarios

No	Name	Definition	Provoked by	Observations
		with impact on the environment ; the crisis developed because the impossibility to execute a task or the deficient task execution because the environment	the deficient task execution	could be diffused by changing the task
3	Machine- environment or environment- machine crisis	The technological crisis	-the improper functioning of	a proper maintenance of the
4	Working environment- environment crisis	The techno-environmental crisis developed because the mixing between working environment and environment	-improper containing of the working environment	Could be diffused by an adequate separation between the two environments

THE EXPERT APPROACH

We used an expert approach ³, firstly to model the safety and environment assessment process, secondly to capture the heuristic knowledge from the safety and environmental experts and finally to develop expert system modules for assistance in the assessment process and also in the improvement of the situation. Also, the expert approach allows the usage of fuzzy data.

We have chosen an object oriented expert approach. This allows the definition of the following hierarchical structure:

WORLD OF INTEREST--> CLASSES--> OBJECTS---> ATTRIBUTES

The class components of our model are detailed in the table 4

Table 4. Class components

Man-Machine	Human	Human	Human	Man-Machine
system	operator	operator-	operator-	system and
		Environment	Environment	environment
		Interaction	crisis	are general
	Task	Task-	Task-	static classes.
		Environment	Environment	All the
		Interaction	crisis	interaction and
	Machine	Machine-	Machine-	crisis classes
		Environment	Environment	are dynamic
		Interaction	crisis	ones
	Working	Working	Working	
	environment	environment-	environment-	
Environment		Environment	Environment	
		Interaction	crisis	

It is possible to see that from this composition a complex hierarchical structure is born, structure that can satisfy all the major needs of a model.

For the safety assessment, there could be defined specific objects that are describing a part of the world that is assessed. For example, the following table presents some of the objects for the human operator.

	is specific to the fifth	1	
HUMAN	Object name	Object possible	Object description
OPERATOR		ranges	
CLASS	General training	010 or yes/no	Specifies the operator's training regarding the performed activity
	Safety training	010 or yes/no	Specifies the specific safety training of the operator regarding the activity being performed
	Physical state	010 or yes/no	The state in which the operator is at the beginning of the work, relatively to his physical attitudes
	Mental state	010 or yes/no	The state in which the operator is at the beginning of the work, relatively to his psychical attitudes
	Safety responsibility on him/herself	010 or yes/no	Responsibility to assure personal safety
	Safety responsibility to co-workers/others	010 or yes/no	Responsibility to assure other's safety

Table 5. Objects specific to the Human Operator Class

The interaction classes have objects that are defining specific parts of environmental aspects. Some of these are presented in the following table:

Interaction	Specific	Description
	objects	
Human	Specific	Describes the necessary training for the human
operator-	environmental	operator so as to conform to the ecologic rules
Environment	training	
Interaction	Environmental	The necessary sense to assure ecological
	sense	protection
	Preventive	The possibility to take rapidly preventive attitudes
	attitudes	in case of an incoming event
Task-	Environmental	The task design that is taking care of ecological
Environment	design	aspects
Interaction	Task execution	If at the task execution the environment is
		polluted
	Environmental	If there is any control after the task fulfillment
	control	
Machine-	Machine	The environmental correct design of the machine
Environment	design	
Interaction	Machine	The maintenance of the machine that is avoiding
	maintenance	ecological problems like spills, etc.
	Machine	The environmental control of the machine output
	environmental	
	control	
Working	Work	The environmental maintenance of the work
environment-	environment	environment
Environment	maintenance	
Interaction		

Table 6. Example of objects specific to the Man-Machine-Environment interaction	S

The following figure shows the graphical representation of the classes that were built inside the model.

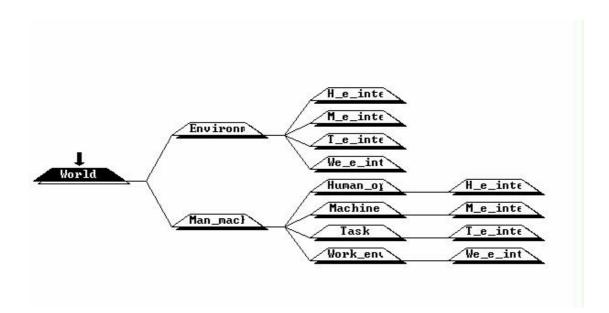


Figure 3 Component classes of the model

The Human-Environment, Machine-Environment, Task-Environment and Work Environment-Environment Interactions were defined with both Environment and Human Operator, Machine, Task and Work Environment as their parent classes. This definition allows the inheritance of all the general properties dependent on the Environment and also on the Man+Machine components.

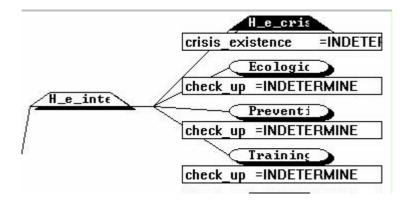


Figure 4. The components of Human Operator-Environment Class

In the previous figure the resultant class, Human Operator-Environment Crisis appears. The attribute for this class, crisis_ existence is activated when a specific rule is triggered, as in the next figure.

Figure 5. The rule that triggers the activation of the Human Operator-Environment Crisis Class

It is possible to see that there were introduced some example attributes for exemplifying the rule, attributes that are defined as belonging to the Human Operator-Environment Interaction; these attributes, by taking the No (FAUX) values are activating the class Human Operator-Environment Crisis with its attribute crisis _existence.

The next figure shows parts of the tracing process of the trial run

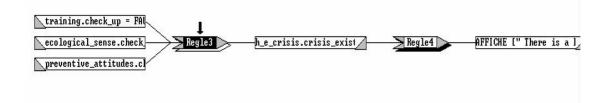


Figure 6. Part of the tracing process of the trial run

STATISTICAL ASPECTS

Putting together occupational accidents and environmental accidents data it is possible to see that machine –environment and work environment-environment crisis are the most serious from the environmental point of view.

We would present just some case examples to confirm our theory, in the following paragraphs.

A)MACHINE-ENVIRONMENT CRISIS

In the metal processing industries, significant ecological incidents are resulting especially from the lead processing industry located in the northern part of the country.

Because of the environmental unfriendly design of the lead processing installations, serious and irreversible damages were caused not just to the environment but to the health of the population living in the area ,especially children.

B)WORK ENVIRONMENT-ENVIRONMENT CRISIS

Uncontained cyanide spills from various chemical plants in the eastern regions have reached the rivers, killing the fish and poisoning the local population that was eating the dead fish.

The next table is showing the transformation of local incidents into serious ecological and occupational accidents, for the last three years

Year	1998	1999	2000	
Reported incidents	20	25	30	
Serious accidents	5	11	19	

Table 7. Incidents vs. serious accidents⁴

The next table makes the connection between the reported incidents and design causes

ruore comercentes europea of aesign procreme					
Year		1998	1999	2000	
Reported incidents		20	25	30	
Design	caused	15	21	26	
incidents					

Table 8.Incidents caused by design problems⁴

CONCLUSIONS

Some aspects of the development and functioning of an assessment system for multi-stage assessment were presented in this paper.

In the first stage, the system is assessing the safety design of a product ,technology or service, respectively the safety at the manufacturing, usage and disposal of a product or service.

In the second stage, the system is assessing the environmental outcome of the usage of the product, technology or service and is developing (or not, if it is not the case) crisis scenarios for the interactions between the components of the Man-Machine system and the environment.

If the product is safe and environmental friendly it could be developed further, being manufactured, distributed and used accordingly with the indications.

If the product is not in conformance with the safety and environmental established rules, it is redesigned till it becomes conformant.

REFERENCES

1.Creanga Camelia- New tendencies in safety implementation towards the design phase.Safety Integrators and design safety audit. (PDF document) In SafetyNet page www.safetynet.de

2.Creanga Camelia-Environmental protection as a design need, in Researches in Safety, no.23,May 2000, pg.447-449

3.Creanga Camelia and Kovacs Stefan-Expert systems for safety assessment, MEDINF 1998 4.Internal Labour Minstry Statistics, 1998-2000

5.Germain Arnold,Rowan Roane-Safety,Health and Environmental Management,A Practitioner Guide,a publication of Risk Management Institute,Inc.1998

6.Petersen Dan-Techniques of Safety Management(A Systems Approach), Goshen NY, 1989