
THE DESIGN AND VALIDATION OF SOFTWARE USED IN CONTROL SYSTEMS -

SAFETY IMPLICATIONS

J Brazendale* and I Lloyd**

This paper gives an overview of software engineering
and its role in safety. Strategies for software design
are discussed, and the need for a system-level approach
emphasised. HSE's initiative to introduce safety
integrity levels for software and a framework for its
implementation is outlined and comments invited on Its
form.

KEY WORDS: SAFETY, PROCESS CONTROL, SOFTWARE

INTRODUCTION

Software now plays a key role in the effectiveness and efficiency of UK
industry with the process industries being no exception. However there is
a growing concern that a more structured and rigorous approach to software
development is required if safety standards are to be maintained

The main problem with software is that unlike hardware it is not wear and
tear that 1s the main cause of failure but:-

1. Inadequate design
2. Inadequate control of maintenance changes.

The problems associated with software can be appreciated by considering
the following incident Involving a chemical batch reactor. (from (1)
based on (2)). Programmers, designing alarm handling routines, were told
that if an alarm occurred on the plant they were to design the safety
system program so that all control variables were left as they were and to
sound an alarm. On one occasion the process computer received a signal
indicating a low oil level in a gear box just after reactant had been
added to the batch. The computer acted as it had been programmed, it
sounded an alarm and left the controls as they were. Unfortunately this

* HSE, Technology Division ** - Admiral Management Services Ltd
Control Systems Group Camberley, Surrey.
Magdalen House, Bootle
Merseyside
309

IChemE SYMPOSIUM SERIES No. 115
included the cooling water control which remained "frozen" at a low
level. The plant operators were too busy investigating the low oil alarm
to notice that the reactor was overheating. An exotherm occurred and the
reactor contents discharged to atmosphere.

In analysing the causes of the incident Kletz (2) found that although a
HAZOP had been carried out at the design stage of the reactor those
concerned did not understand what went on inside a computer and it was
also clear that the programmers were unsure as to what was meant by
"keeping the control variables as they were".

Clearly a systems level approach is required to ensure a safe design of
computer controlled plant.

In recognition of this requirement HSE has published guidance on the
safety of programmable electronic systems (3).

The principles behind this guidance have been reported extensively
elsewhere (4) and therefore are not discussed in detail here. The key to
the HSE guidance is a systematic design and assessment procedure based
upon the following steps (see also fig. 1):-

STEP 1 ANALYSIS OF THE HAZARDS
STEP 2 IDENTIFY THE SAFETY-RELATED SYSTEMS (SRS)
STEP 3 DECIDE ON THE REQUIRED LEVEL OF SAFETY INTEGRITY FOR THE SRS
STEP 4 DESIGN THE SRS USING SAFETY CRITERIA FROM 3
STEP 5 CARRY OUT SAFETY INTEGRITY ANALYSIS
STEP 6 CHECK SAFETY INTEGRITY ACHIEVED

In the HSE guidance, software is classified as a systematic (ie. design
related) failure and to overcome this failure mode it is recommended that
attention is paid to improving the quality of the software design process.
Sixteen checklists with over 100 questions relevant to software are
detailed in the HSE guidance documents to act as an aid to critical
appraisal during the design process. (See fig. 2 for an example of a
checklist).

However although these checklists form a useful input into the design
process it was recognised that further guidance in this area was required.
HSE therefore commissioned a research project to strengthen its existing
advice. The project has reached the stage where it has produced a
framework for the development of safety-related software. This framework
is discussed below but first a brief account of the principles behind
software engineering is given.

SOFTWARE ENGINEERING

Software has become increasingly complex over the last thirty years. In
order to cope with this complexity various software engineering techniques
have evolved. Basically these techniques split the problem of producing
software into a number of stages (Divide and Conquer) so that each stage
becomes manageable. These stages form what is called the Software
Lifecycle (fig. 3 from the STARTS Purchases Handbook (5) shows a typical
software lifecycle).
310

IChemE SYMPOSIUM SERIES No. 115

The main phases are as follows:-

Requirements Specification

This stage involves specifying what you want the computer system to do.
The textbooks say it should be accurate, complete, unambiguous and non-
contradictory. A tall order in practice and more so with safety
requirements because as we all know it is more what the system (machine,
chemical plant etc) shouldn't do than should do that is important.

Software engineers have found the requirements phase one of the most
difficult parts to get right. Lack of knowledge of plant and processes;
division of responsibilities (electrical, chemical, computer engineers?)
misunderstandings and ambiguities in written specifications have all
caused problems. Formal methods are, at present, being suggested as the
solution to this problem. Formal methods refer to techniques for writing
the specification in a mathematical form so that you can prove (as in a
mathematical equation) that the design meets the specification.
Undoubtedly the very act of analysing the requirements mathematically will
bring benefits but they will obviously not show up the unforseen. (This
is the same problem as when one asks: Is a Fault Tree correct?). The key
issue 1s obtaining confidence that the software has the right level of
integrity for the application in question. Formal methods represent the
highest level of rigour possible in software design; but that does not
mean that a less rigorous approach could not result in the same level of
integrity. As one might imagine this 1s an area of intense debate at the
current time.

However one matter that is clear is that engineers have a vital role to
play in requirements specification, after all it is they who know the
plant best.

Architectural Design

After the specification has been written the developer then starts an
interactive process of splitting the system into various modules which
describe how the requirements will be met.

Detailed Design

This is the process of transforming the architectural design into a form
which can be given to a programmer. Program design languages (PDL) are
often used at this stage. These are a notation which describe
requirements in a form halfway between a computer language and English.
The idea is to show the programmer the preferred procedures for meeting
the requirements specification without going into the detail of a
particular language.

Coding

The programmer would then convert the above PDL into Basic, "C" or
whatever. Increasingly the two jobs of specifying the PDL and coding are
done by one person.
311

IChemE SYMPOSIUM SERIES No. 115

The choice of language does have an impact on safety. To quote Abel son
and Sussman (6).

" A language is more than just a means for instructing a computer
to perform tasks - the language also serves as a framework within which
we organise our ideas about processes".

It is this philosophy that has led to the development of strongly-typed,
high-level languages which allow the programmer to more easily describe
the problem to hand; and which reinforce good programming habits. The
overall aim being to reduce the chance of human error. This should be
contrasted with assembler and other low level languages were there is the
danger of becoming engrossed in register manipulations and forgetting the
key features of the problem. However a disadvantage of high level
languages is that they require compiling, a process that can introduce
errors. The selection of a high or low level language has no easy answers
at present.

Module Testing/Integration

As each major module is produced it will be tested for errors, joined to
the next module and then the composite system tested for interface errors.
This process continues until the whole system is assembled.

Acceptance Testing

The final system is subjected to a series of tests usually involving real
data to demonstrate to the customer that the system works.

Verification and Validation

Experience has shown that if software errors are to be avoided a very
structured approach to testing throughout the lifecycle is required. (By
testing I mean a set of techniques to achieve "good quality" software and
not just the exercising of the program with data).

These testing strategies can be divided into 2 types:-

(1) Verification
(2) Validation

Verification is testing to see that the results of a particular phase
meets the requirements of the previous phase

OR Have we built the product right?

Validation is testing to see that the results of the whole project meet
the requirements

OR Have we built the right product?
312

IChemE SYMPOSIUM SERIES No. 115

An example of verification is the mathematical proof involved in checking
a formal requirements specification. The complete opposite in terms of
sophistication (but commonly used) is "eyeballing" the code in a module
probably as part of a formal review by a panel. Group and peer-review
"inspection" techniques based upon Quality Assurance schemes are a
development of this method.

Examples of validation techniques include the acceptance testing mentioned
above and prototyping. Prototyping is the production of an early version
of the software product. The customer is than able to see if the design
1s the same as he had in mind.

SOFTWARE AND SAFETY

As I hope is clear by now, software of itself is not a safety problem. It
is the system (machine/chemical process) that causes the problem and
therefore any safety analysis of software needs to consider the system as
a whole. In particular the requirements specification cannot be developed
unless the system as a whole is considered. Hence the need for the top
level approach illustrated in fig. 1.

However having identified the hazards and produced the safety requirements
specification, a number of strategies for the software design are possible
including:-

Fault Avoidance
Fault Detection
Fault Tolerance

Fault Avoidance

Fault avoidance is concerned with making software as fault free as
possible by the use of rigorous development methods throughout the
lifecyde. Examples include:-

Formal methods for the specification
Avoid complexity (make it as simple as possible)
Use structured design methods

The latter include graphical notations for describing the system

Quality assurance (particularly the verification and validation
steps)

Fault Detection

This takes as Its premise than many faults if detected quickly can be
prevented from causing harm (similar to fail-safe design philosophy).

Example include :

Watch dog timers
Self-checking eg. ROM checksum techniques
313

IChemE SYMPOSIUM SERIES No. 115

Fault Tolerance

This takes as its premise that no software is fault free and therefore
certain techniques are needed to make the system tolerant to the
(inevitable) faults that will occur. (NB. It could be argued that even if
"perfect" software existed fault-tolerance is needed because software can
be corrupted by for example electro-magnetic interference).

Techniques include:-

Software Diversity (programming in two or more languages to avoid
the same design faults)

Error correcting codes (eg. in communication systems)

Voting (eg. 2 out of 3 voting systems)

SOFTWARE DEVELOPMENT FRAMEWORK

The research project mentioned above confirmed to HSE that the spread of
knowledge and use of appropriate techniques for producing safety-related
software in UK industry was sporadic thus justifying the need for further
guidance. It was decided that this guidance should be based upon a
Framework that would define a range of safety integrity levels. The
Framework will point to various approaches that could be used to meet
those levels. This gives industry the flexibility to develop its own
particular approach yet still meeting the standard of safety required.

The structure of the proposed framework is as follows:-

Integrity Levels

An integrated set of attributes and requirements which must be met
for each stage of the Hfecycle for each integrity level.

An integrated set of generic methods and techniques for each set of
attributes and requirements at each integrity level.

Alternative sets of methods and techniques where it is clear that
the same level of integrity can be achieved in a different way.

A set of generic roles with pointers to the their responsibilities
for the generic methods and techniques within each set.

The structure is illustrated in fig. 4. The key to the structure is the
integrity level. Qualitatively, the higher the level (ie level 1) the
lower the chance of the software causing a failure of the system. Each
level will contain an integrated set of generic attributes and
requirements that must be met for that level. Mapping onto these will be
one or more sets of methods and techniques which if applied correctly will
meet the requirement. More than one set will be proposed if there are
alternative ways in meeting requirements. For example, rigorous
specification using formal methods may meet the highest level, but the
same level of confidence would be obtained by complete functionality
testing where it is possible to do 100% path testing.
314

IChemE SYMPOSIUM SERIES No. 115
Clearly we do not yet have all the solutions to fill 1n the framework, but
we can take advantage of this to Identify areas requlMng:-

Research
Techniques/Tools
Standards/Guidance.

Overall the intention is to reach a stage where any remaining doubts about
the suitability of software for safety related systems 1s removed.

CONCLUSIONS

Achieving safety with software requires a structured approach that allows
Innovation and flexibility whilst still maintaining the appropriate level
of safety Integrity.

The framework described above is suggested as the way to move towards
those objectives. Clearly there will be much debate on Its precise form
and aims (eg. number of Integrity levels (3 or 4?); how do we match
probability of failure with a given software development method?). HSE
intends therefore to carry out extensive consultation. In that respect I
would welcome your comments on the matters raised in this paper.

References

1. Levenson N G (1986). Computing Surveys Vol 18 No. 2 June 1986.

2. Kletz T (1983). Hazard Prevention (March/April 1983) pp 24-6.

3. "Programmable electronic systems 1n safety related applications:
2, General technical guidelines. HSE publication. HMSO London
(ISBN Oil 8839063).

4. Pearson J and Brazendale J (1988). I. Chem. E Symposium Series No.
110.

5. The STARTS Purchasers' Handbook, National Computing Centre, Oxford
Road, Manchester.

6. Abelson H and Sussman G J (1985). Structure and Interpretation of
computer programs. MIT Press, 1985.
315

IC
hem

E
 S

Y
M

P
O

S
IU

M
 S

E
R

IE
S

 N
o. 115

316

IChemE SYMPOSIUM SERIES No. 115
FIG 2 : CHECKLIST FROM PES GUIDELINES

Software specification

Item
No

IOA.8

Are design reviews earned out in the
development o(the software specification
involving users, system designers and
programmers?

Is the final specification checked against the
user requirements by persons other than those
producing the specification before beginning the
design phase?

Are automated tools used as an aid to the
development of the software specification in

Cf) documentation?

(iO consistency checking?

Within the software specification, is there a clear
and concise statement of:

(i) each safety related funcaon to be
implemented?

(iO the information to be given to the operator
at any time?

(iii) the required action on each operator
command including illegal or unexpected
commands?

(IV) the commurucaoons requirements between
the PES and other equipment?

(v) the iruoal states for all internal variables
and extemai interlaces?

(vi) the required action on power down and
recovery? (eg saving of important data in
non-volanle memory)

(vu) the different requirements for each phase of
plant/machine operaaor.? (eg start-up. normal
operation, shutdown)

(viii) the anncipated ranges of input variables and
the req\ured acuon on out-of-range variables?

(rx) the required performance in terms of speed,
accuracy and precision?

(x) the constraints put on the software by the
hardware? (efl speed, memory sire, word
length)

(xi) internal self-checks to be earned out and the
action on detection of a failure?

(0 Is there a software test specificanon?

Y N NA

I I ! I

Y N NA

! I I I

Y

Y

N NA

N W-.
317

IC
hem

E
 S

Y
M

P
O

S
IU

M
 S

E
R

IE
S

 N
o. 115

318

IC
hem

E
 S

Y
M

P
O

S
IU

M
 S

E
R

IE
S

 N
o. 115

319

	INTRODUCTION
	SOFTWARE ENGINEERING
	SOFTWARE AND SAFETY
	SOFTWARE DEVELOPMENT FRAMEWORK
	CONCLUSIONS
	REFERENCES
	Figure 1
	Figure 2
	Figure 3
	Figure 4

