
46 
THE CALCULATION OF VENTING AREAS FOR 
PRESSURE RELIEF OF EXPLOSIONS IN VESSELS 

By G. MUNDAY, Ph.D., D.I.C., B.Sc* 

SYNOPSIS 

In this paper an analysis of the pressure changes accompanying the venting of an explosion in a confined space 
is used to determine the discharge area required to protect process vessels. It will be shown, using an extension 
of the method suggested by Lewis and von Elbe1 for closed vessels, that the pressure in the vessel is a function 
of the shape of fhevessel, the area and position of the vent, and the properties of the reacting species. Using 
these results equations have been developed to determine the minimum discharge area required for constant 
pressure venting above the critical pressure for sonic discharge. The theoretical equations have been tested 
by the application of published experimental data and in most cases there is close agreement between theory 
and practice. 

Introduction 

Considerable experimental information is available on the 
pressure developed in explosions in vessels, and the effects of 
venting. So far no rational analysis has been produced 
which satisfactorily accounts for discrepancies between 
results. Originally, investigations into explosions were 
performed in closed vessels and the provision of venting 
based on the ratio of valve area to vessel volume as deter­
mined from the hydrodynamic theory of the discharge of 
gases from high pressure reservoirs. Later2 it was found that 
the experimental work on closed vessels could not be applied 
in real cases on the basis of this simple model and correlations 
were made using the K factor representing the ratio of the 
vent area to the flame area. 

Explosion pressures have been calculated from basic 
considerations of flame propagation but so far only those 
dealing with closed spherical vessels have yielded satisfactory 
results. The analysis of what happens when an open vent 
is introduced in the vessel is complicated by the turbulence 
and mixing set up by the discharge. The formation of rare­
faction waves which interact with the flame has been con­
sidered as the basis of an analysis3 but so far a solution has 
not been obtained. However, Rasbash and Rogowski4 have 
suggested the possibility of a semi-empirical relation between 
the increased combustion rate, because of venting, and the 
Reynolds number of the flow in front of the flame. This 
appears to be first step towards a rational approach to the 
problem and it has suggested the following possible line of 
attack. 

General Theory 

Equations of conservation of mass and energy of burnt and 
unburnt elements of gas in a closed vessel are set up in the 
normal manner. Terms are included to account for the mass 
and energy of the gas which are lost from the system when 
the vent opens. An assumption of a power law for the 
variation of flame velocity with pressure is introduced, and 
a solution obtained for the state of the system at any instant 
of time. The turbulence generated by the venting process is 
assumed to increase the normal combustion rate by a factor 
which depends upon the relevant Reynolds number. 
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It is assumed that a flame moves through the gas and 
raises its temperature during the process of combustion. 
Heat is not transmitted in significant quantities through the 
gas but the increase in temperature and change of volume of 
the burnt gas cause a rise in pressure accompanied by adia-
batic heating of the gas throughout the vessel. Thus every 
element of gas has its temperature raised in three operations; 
initially in its unburnt condition by adiabatic compression 
due to burning of elements of gas near the ignition centre; 
then in combustion; and finally in its burnt condition by 
adiabatic compression because of the burning of elements 
of gas further away from the ignition centre. 

Consider a gas element of mass and volume in a 
vessel of volume Initially the element is at an absolute 
pressure. and an absolute temperature and has a density 
and molecular weight and , The gas in the vessel ignites 
at a point some distance from the element and a flame 
spreads through the gas at a velocity which depends on the 
pressure and temperature. The heat evolved in this process 
induces a change in pressure which causes the temperature 
of all elements of unburnt gas to rise to according to the 
equations : 

Here the subscript refers to conditions in the unburnt gas 
at a time after ignition. is the volume occupied by one 
molecule of the gas and is a constant for all the elements 
of unburnt gas. 

When the flame reaches the element, it burns at constant 
pressure, and its temperature rises instantaneously to 
Since it has undergone a chemical change, the molecular 
weight changes to that of the products, The burnt element 
is compressed adiabatically from the temperature to the 
temperature as given implicitly by: 

and the equation of state. The subscription b refers to 
conditions just after burning and the subscript to con­
ditions in the burnt element at a pressure Since each 
element enters the combustion zone at a different temperature 
the " initial" conditions in the burned state, as represented 
by : will vary from element to element. Hence, the term 

will only be a constant for each element and will depend 
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on the conditions in the element immediately after burning. 
This process continues until the flame reaches the walls of 
the vessel and all the reactants have been burnt. 

The mass of any volume element of gas can be determined 
from either equation (1) or (3), and the equations of state of 
reactants or products respectively. By summing these 
elements over the volume of the vessel the total mass of gas 
can be calculated and equated to the mass of gas originally 
present. 

The energy contained in each element of gas as it undergoes 
an adiabatic pressure change is : 

&E= CvT6.wjm (4) 

where Cv is the heat capacity at constant volume, and is 
assumed equal to 0tliy—\\ where y is the ratio of specific 
heats. The total energy of the system is obtained by inte­
gration and is equated to the sum of the heat evolved in the 
reaction and the initial energy of the system as given by: 

A#du> + CvTiwilmi • ( 5 ) 

where AH is the heat of reaction per unit mass of burnt gas, 
wb is the mass of burnt gas, and w( is the initial mass of gas. 

These relations represent a thermodynamic examination of 
the combustion of gases in closed vessels and, although they 
express the state of the gas as a function of the position of the 
combustion zone, contain no reference to the time rates of 
change of parameters. To introduce a time scale, the chemical 
kinetics of the explosive system must be considered and the 
rate of combustion expressed as a function of temperature 
and pressure. By assuming that the temperature and pressure 
of the reactants are related by an adiabatic law, the burning 
rate can be written as a function of pressure alone. It has 
been found convenient to express the mass burning rate per 
unit flame area as being proportional to the pressure raised 
to some power: 

dwp 
df / * -

KPP (6) 

where Af = area of the flame at time /, and K and /3 are 
constants for the system under consideration. This relation 
has been tested for a number of systems and found to be 
adequate. 

If pressure relief is applied to the vessel at a certain time, 
t0, the mass and energy of gas vented from the vessel must be 
included in the two balances. It is assumed that the pressure 
in the vessel is above the critical value and the flow through 
the vent is sonic. Then in a time dt the mass vented is given 
by: 

dw„ = CdA Ppy 
y+\ 

7+I/7-I' 
At (7) 

•where CdA is the corrected discharge area of the vent. 
Therefore: 

where: 

= (yB)* CdA(Ppfdt . 
Jt0 

I 2 \y+i/y-i 

• ( 8 ) 

• (9) 

Since the gas discharged may be reactants or combustion 
products, the density term can bear the subscript u or b, and the 
corresponding mass terms will be w.vu and wvb respectively. 

The equivalent energy term is: 

(10) Ev= (yB)i(Cjm) CdA(Pp)*Tdt 

and represents the energy in the vented gas and must be 
included in the energy balance. 

Before solving these equations, the boundary conditions 
must be stipulated. Two problems are examined so that the 
solution can be applied to a variety of vessels. The first 
configuration covers approximately cubic vessels, and the 
second deals with elongated vessels, or ducts, which can be 
considered as one-dimensional. 

(i) In spherical combustion the flame expands as a 
spherical shell from a point of ignition at the centre of the 
vessel until it reaches the walls when it is completely 
extinguished. When the vent opens the flame will be 
distorted but it is assumed that this effect is equivalent to 
the increased expansion of the burning spherical shell 
which would be caused by an equal venting area evenly 
distributed over the entire surface of the vessel. In this 
case only unburnt gas can be vented. 

(ii) In one-dimensional plane combustion, a flat flame 
travels along the vessel and is considered to commence as 
a plane flame extending across the section. Ignition can 
occur at any plane, and the discharge area is evenly dis­
tributed over either or both ends but not in the length of 
the vessel. Burnt or unburnt gases can be vented in this 
case. 

Spherical Combustion 

When the analysis is applied to spherical combustion in a 
vessel of radius R the equations of conservation of mass and 
energy are respectively: 

' CdAjP+rMW dt l-n=(l-r)f*)p1lru + 

= 3 ^ i / y s | ftdr] 

and 

1 + 3 — e V ' r * m, 

0 'p 

if 2 

T A -'if :n>v 

i i 1 

Yup+YuZ^p 

yb-l 

+ CdApf*y»-W*yj dt (12) 

where, 

P = 
Pt 

n = ^ 

F.n = y- a n d C={yuaTtBlm#. 

r is the radial coordinate of position and subscript/refers to 

the flame; b is a constant and equals ^ which is 
me 1 j(Cv)u 

the ratio of the energy available from the combustion to 
the compression energy initially in the reactants. This is 
a property of the gaseous mixture. 

The rate of combustion is given by equation 6 and is zero 
upon ignition when the flame area Af is zero. It is assumed 
that the power law is valid only above a critical flame area 
Af*. The rate of combustion can then be written: 

dw,, 

therefore: 

d/ 

dn 
~di 

= KAf*P/= M{ 

M_i A 
W; 'A i-J* 
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B
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t
a
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w
f

ut, if Av = surface area of the vessel: 

dt 
M; A 
w, 'A *-W ;i3) 

Combining equations (11), (12), and (13) 

n+1 

Yb~Yu 
Yb 1 

\ - n -

X yr,-i)/y« + 

1 
H 

- 1 

a nKr»+i) / (2r*) ] - i J ._L d« 

(14) 

here n0 = fraction of gas burnt when the vent is opened: 

M,V 
H = 

CWfA/ 

which is proportional to the ratio of the burning velocity to 
he velocity of sound in the reactants under initial conditions) 
nd a = CdA/Av = discharge area as a fraction of available 
rea. This equation can be solved for the particular case in 
hich yu = yb. Only an approximate solution is available 

or values of yu ¥=yb and this is given in Appendix I. 
When Yu=yb = y 

dp 
dn 

= b 
1 

- nt—r. 
Vf H*-* 

and 

where, 

T ? / = [l+bn-{l 

9 2y and 8 = 

n)pd]lp 

y - \ 

(15) 

7 

The relation between p and n is obtained by finite difference 
methods and the variation with time is given as: 

dp 
^ = Hbr)fpfi-xp<*y-»iW ;i6) 

where r = (CAJ V)t, the dimensionless time term. V/(CAV) 
is a measure of the time it takes a sound wave to travel the 
characteristic dimension of the vessel. This dimension is 

-zy- for a sphere, and L for the one-dimensional vessel. Hence, 

T is the time scale corrected for the size of the vessel as it 
affects the propagation of pressure changes. 

One-Dimensional Combaustion 

In the one-dimensional theory a similar treatment of the 
problem is pursued. The centre of ignition is made the origin 
of the system and the two ends of the vessel are identified by 
the subscripts + and — as shown in Fig. 1. Coefficients Su

+, 
Sb+, Su~~ and Sb~ are introduced to account for cases where 
venting of either unburnt or burnt gases occurs at the positive 
or negative ends. The coefficients have the value one if venting 
occurs and zero when it does not. Hence, the mass balance 
on the unburnt gas is : 

(1 - » ) = [! -(Xf+-Xf-)1 P1,Yu 

+ -jr(Stt+ + 
Jt. 

ajfiYu+msvJ dt (17) 

where x — XIL a n d t h e o t h e r symbols have the same meaning 
as before. 

Centra 
of 

End ignition 

Flamas 
tota l a r«a 

A • End 

Fig. I.—One-dimensional combustion model 

In considering the burnt gas vented it is necessary to 
introduce the term: 

F = He lib] 

which characterises the state of the burnt gas which is being 
vented. Then, the mass balance on burnt gas is: 

TTli Xf rP 

+?,-£<*++*-
a / J(y6+l)/(2r6) 

F * 
-dt ;is) 

When Xb = Yu ~ Y> t^ ie e n e r §y balance can be written: 

P + 
in S*++Su- + -*{Sb++Sb-)lF* 

l+b^ 

m 

'Xf * P 

a / , (3y- l ) / (2r) d t 

h 

\p^r g+-£(sb++sb-)FPo-* 
Jxr rp ^ 

J; X xplr+VKM dt ;t9) 

The equation for the rate of combustion is obtained by 
making the assumption that the flame is instantaneously 
established as a plane across the vessel section. If ignition 
is at one end of the vessel a single flame is formed but if it 
occurs within the vessel two flames propagate in opposite 
directions and the flame area is doubled. 

Then: 

dn 
dt w( 'Af*' \A, 

ii; (20) 

if the correct value is assigned to {Af/A^). 
The solution of equations (18), (19) and (20) for Yu=yb = Y 

is: 

dn H Af 

and: 

(Xf+~Xf~)P 

= [l-(Su
++Su-)IS]p-(l-n)p° 

+ {l + nb)(Su++Su-)fS 

121: 
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ONE VENT 
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Unburnt gas vented t i l l flame reaches 
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Unburnt gas yented. 

s„- = s, + = i sb- = sb+ = o 
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— end +end 

1 X 
[_ 

1 F lame Af = A0 

Burnt gas vented. 

Sf = 1 S, r = SB+ = S6- = 0 

A//A, = 1 

S > 1 

—end +end 

fx ' 
J 
1 Flame Af — A„ 

Both burnt and unburnt gas vented. 

sb- = s, + = i s6+ = s„- = o 
V A „ = l / 2 

S > 1 

CLOSED END IGNITION 

— end +end 

X 

1 Flame Af = A0 

Unburnt gas vented. 

su~ = i s„+ = sb- = s,+ = o 
A,/A. = 1 

S = 1 

Definitions of coefficients 

s,r su-sb-r sb-. 
For hemispherical flames values of 
AfjAv should be doubled. 
A0 = cross-sectional area of vessel. 

Fig. 2.—Definitions of coefficients, and areas for one-dimensional combustion 

where: 
S = Su++ Su~+ —« (Sb++ Sb~)lF* 

This result assumes that Fpo does not alter with time. The 
eiTor introduced is small and for constant pressure venting 
is zero. 

Av = maximum area for venting and distinguishes between 
the cases in which one or both ends are used. Fig. 2 illustrates 
five possible systems and gives values for the coefficients and 
flame area in each case. 

Comparison with Experimental Results 

Equations (15), (16), and (21) predict the behaviour of 
gaseous explosions in closed and vented vessels. By solving 
these equations the theory can be examined in the light of 
experimental evidence. In most cases, the solution requires 
a step-by-step calculation using a finite difference method, 
and each case must be considered separately. Only three 
experimental studies have been examined and, although these 
are primarily concerned with the venting of explosions the 
results for closed vessels will be considered first. 

Pentane-air explosions in a nearly spherical vessel0 

These experiments were carried out to determine the 
effectiveness of vents for the relief of explosions. Unfor­
tunately, the results are either for venting pressures less than 
critical or for spring-loaded valves about which insufficient 
information is given. Therefore only the closed vessel results 
have been used and a theoretical pressure-time curve con­
structed for the explosion assuming the vessel to be approx­
imately spherical. 

The initial burning velocity has been taken as l-2ft/s as 
suggested by Wilson, and the exponent /3 which determines 
the effect of pressure on the burning rate as 1-3. Equations 

(15) and (16) have been solved and the results are plotted in 
Fig. 3 in terms of the pressure ratio and the dimensionless 
time group Hbr. Wilson's results are re-plotted on the same 
figure together with his pressure-time curves for stirred 
explosions using an increased initial flame velocity in the 
calculation of H. This value is obtained by multiplying the 
true flame velocity by a factor proportional to the square of 
the diameter of the fan. (The justification for this step is 
discussed later.) Agreement between theoretical prediction 
and experimental measurements is good up to p = 6. Above 
this pressure ratio the flame touches the wall of the vessel so. 
that the analysis is no longer applicable. 

Pentane-air explosions in a duct6 

In these experiments a tube 6 in. in diameter and 6 ft long 
was used and pentane-air mixtures were ignited at one end. 
Pressure-time records were obtained for explosions vented at 
either end using bursting discs or open vents. Only the 
closed vessel experiments will be analysed since much of the 
work was performed at sub-critical pressure ratios. Although 
these ducts can be considered one-dimensional the explosion 
has been examined in three phases which include the initial 
burning of the gas as a spherical shell until the flame reaches 
the wall. During this process the sphere is displaced along 
the tube due to the flow of gas away from the ignition end. 
The analysis of this phase is identical to that for spherical 
combustion in which the radius of the vessel is that of a 
sphere which has a ratio of volume to surface area equal to 
the length of the duct under consideration. The displace­
ment has been calculated from a mass balance on either 
side of the centre of the sphere assuming there is no gas flow 
across this plane. 

In the second phase, two flames exist, travelling in opposite 
directions. Gerstein et al? have shown that the two flames 
will be approximately hemispherical in shape and have a 
surface area of about twice the cross-sectional area of the 
SECOND SYMPOSIUM ON CHEMICAL PROCESS HAZARDS (1963: INSTN CHEM. ENGRS) 
E l 



MUNDAY. THE CALCULATION OF VENTING AREAS 
1 2 3 

DIMENSIONLESS TIME GROUP {Hbx 

Equations (15) and (16) 

O A • Experimental5 

Fig. 3.—Comparison between theoretical prediction and experimental 
results for pentane-air explosions in a nearly spherical vessel 
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4.—Experimental and theoretical results for pentane-air explosion 
in ducts 

tube. This means that equations (21) must be solved with 
Af/Av = 4. This stage is completed when one flame reaches 
an end wall. 

In the final stage, a single flame travels down the tube and 
a similar analysis is used in which Af/Av = 2. The pressure-
time curve and the flame positions at various stages in the 
process are shown in Fig. 4 (a) and (b). The three stages can 
be clearly seen in the experimental curve and, although they 
do not coincide with those predicted by the theory, it is 
evident that there is reasonable agreement. 

Propane-air and hydrogen-air explosions in a nearly spherical 
vessel vented at one end8 

Mixtures of fuel and air were exploded in vessels under 
different initial pressures. The explosions were vented using 
various bursting discs so that a number of bursting pressures 
and venting areas could be examined. Additional information 
was obtained for closed vessels and the maximum pressure 
and maximum rate of pressure rise were recorded for the 
different initial pressures. These results are used to calculate 
b and /3 which have, respectively, values 7-55 and 1-3 for the 
propane-air mixtures, and 6-25 and 0-5 for the hydrogen-air 
mixtures. 

The vented results are presented in the form of curves 
relating the maximum pressure in the vessel after venting to 
the pressure at which venting commenced. A series of 
curves for three vent sizes and two initial pressures are given 
for each fuel. Present calculations are based on the argument 
that, after the vent has opened the pressure will increase if: 

a < Hbp0-tr]f
2 

where p0 is the pressure at which the vent opens. A maximum 
will be reached if one of two conditions is fulfilled. 

If the rate of venting is such that at some stage the rate of 
pressure increase exactly balances the rate of discharge 
SECOND SYMPOSIUM ON CHEMICAL PROCESS HAZARDS (1963: INSTN CHEM. ENGRS) 
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VENT AREA TERM (-fi%''-'') 

Equation (15) 

Equation (22) 

Fig. 5.—Maximum pressure ratio, pm, after venting at a pressure 
ratio p0 for propane-air explosions 

through the vent, then: 

dp 
An 

= 0 

and: 

sound and viscosity of the reactants and the vent diameter 
respectively. Similarly, the corrected flame velocities used to 
calculate the pressure-time curves for Wilson's experimental 
data were a function of fan diameter, D, and the correction 

Pm — {Hfj - If2!**-) * • • (22) factor can be related to the Reynolds number °- as shown 

In this case, the maximum pressure is almost independent of 
the pressure at which the vent opens. Maximum pressure 
ratios calculated from this equation have a magnitude less 
than two except in the case of very small vent areas (the dotted 
curve in Fig. 5). 

In the other condition the gas continues to burn until some 
part of the flame reaches the vent and the resulting reduction 
in flame area causes the pressure to fall. The maximum 
pressure will depend upon the pressure at which the vent 
opens because the distance between the flame and the vent at 
this instant governs the fuel available for further combustion 
and hence determines the total pressure increase. The 
calculation of the maximum pressure requires the step-by-
step solution of equation (15) for different values of/?0 and a,, 
the maximum pressure being that corresponding to rjf = 1-0. 
The results of these calculations are shown in Figs. 5, 6, and 7. 

In Fig. 5 the maximum pressure is related to vent area for 
a series of values of the operating pressure. The diagram has 
been calculated using yS = 1-3 for propane-air mixtures. 
The diagram can be used for any initial pressure and any 
vessel which is approximately spherical. Using these results, 
the variation of maximum pressure with vent opening 
pressure for three vent areas and two initial pressures have 
been calculated and compared, in Fig. 6, with the results 
obtained by Cousins and Cotton.8 For each curve the value 
of H has been calculated using a corrected value of the 
initial flame velocity to allow for the influence of turbulence. 
The results of similar calculations for hydrogen-air mixtures 
in which /S = 0-5 are shown in Fig. 7. 

The correction factors for the initial flame velocities are 
plotted in Fig. 8 as a function of the Reynolds number given 
by a{ p{ d/fx{, where a{, y.{ and d are the initial velocity of 

in the same figure. (N is the speed of rotation of the fan.) 
This argument is reinforced by the work of Rasbash and 

Rogowski,4 Although the results cannot be used as a direct 
check because the venting pressures are too low, it is 
interesting to note that the authors suggest that there is a 
relation between the increased rate of combustion due to 
venting and the Reynolds number of flow ahead of the flame. 
These results are also plotted in Fig. 8. 

An interesting point can be noted here. The theoretical 
analysis predicts that the correlation between maximum 
pressure and venting pressure ratios should be based on the 
term / = a./(Hb) and not on a alone. This result can be 
tested by examining the correlations for two systems in which 
the effect of initial pressure on burning velocity (and hence 
H) is reversed. Thus, with propane-air there is a decrease 
in burning velocity with an increase in pressure whereas with 
hydrogen-air the opposite is true to almost exactly the same 
extent. The agreement between the results at the two initial 
pressures is therefore significant. 

" Safe " Venting Areas 

If the pressure in the vessel is not to exceed the pressure at 
which the vent opens a criterion for " safe venting " can be 
defined by 

(T) <* (23) 

In spherical combustion the vent area ratio, ac, at which this, 
occurs is given by: 
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Fig. 6.—Maximum pressure reached in vented propane-air explosions p i g . 7.—Maximum pressure reached in vented hydrogen-air explosions 

Hence the vent area will have to change as the flame radius 
increases. However, as is shown in Appendix 2, the pressure 
will decrease, irrespective of the increase in flame area if: 

occ > HbPo-^ (24) 

In the one-dimensional explosions safe venting is achieved 
when: 

= Hbf.p0-*fS • (25) 

The flame area is constant but the value of S can change if 
burnt gas is being vented. Since 5 ^ 1 , 

ac = Hb -J' • Po~ • (26) 

gives the criterion for safe venting which is applicable to the 
worst case. Af/Av depends upon the number of vents used 
and the number of flames. Further, the flame area should 
be taken as twice the cross-section of the duct. (The values 

given in Fig. 2 should be doubled since they have been 
calculated on the basis of a plane, and not hemispherical, 
flame.) 

It can be shown that these two expressions for safe venting 
can be summarised in the statement that the ratio of the 
volumetric rate of discharge to the volumetric rate of burning 
must equal the ratio of the combustion energy to the com­
pression energy in the unburnt gas. 

In order to calculate safe venting areas from equations (24) 
and (26) information concerning the combustion system, and 
the relative position of the vent and the ignition centre is 
required. 

(i) The information concerning the nature of the ex­
plosive mixture is best obtained experimentally using a 
spherical vessel with central ignition. The final pressure 
ratio, pe, and the maximum rate of pressure increase, 
(dp/dt)m, can be measured and used to calculate b and 
fi from: 

b = p.~\ 
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on fan diameter, and speed of rotat ion, ftxRe 

Fig. 8.—Flame velocity correction 

and: 

-£*/«• 
where 5",-* = fundamental burning velocity under initial 
conditions. 

The corrected initial flame velocity, / . $",•*, used in the 
calculation of H^fSf/C, is determined empirically and, 
since experimental figures are not yet available, it is 
suggested that it should be related to the Reynolds number 
as shown in Fig. 8. The choice of Reynolds number will 
depend largely on the shape of the vessel and the size of 
the vent. For large spherical vessels the vent will be the 
controlling factor, and the Reynolds number should be 
based on the flow through the vent. For ducts the Reynolds 
number of flow ahead of the flame should be used. Further, 
it is tentatively suggested, on the results for propane-air 
and hydrogen-air mixtures, that the relation between 
burning velocity and Reynolds number is dependent on 
the system of gases. This is in agreement with the work 
discussed by Lewis and von Elbe9 which shows that the 
burning velocity is a function of Reynolds number or its 
square root depending on the scale of turbulence and that 
the relationship also depends on the system of gases under 
consideration. These conclusions are for flames on burners. 
Hence, correlations for other reactants are required based 
on experimental results for vented explosions. 

(ii) The relative position of vent and ignition centre will 
determine the value of S in equation (25). S is greater than 
one when burnt gas is vented and equal to one when un-
burnt gas is vented. Hence, the vent should be placed as 
near to ignition centres as possible. 

Conclusions 

The analysis outlined above can be used to explain the 
venting of explosions with a reasonable degree of accuracy 
but confirmation is required for the correlation between 
burning velocity and Reynolds number. Other factors such 
as pressure oscillations and pressure drops along ducts have 
not been considered. However, it is suggested that the 
equations derived above give realistic values for safe venting 
areas and that future experimental work should be canalised 
along these lines. 

There are two main advantages in this method. Primarily, 
the analysis is based, from first principals, on mass and 
energy balances, only employing an empirical relationship to 
account for the effect of turbulence because of venting. The 
assumed correlation between increased burning velocity and 
the relevant Reynolds number is supported to some extent 
by analogy with diffusion flame results and is more satis­
factory than ad hoc relationships between maximum pressure 
and vent area. 

Secondly, the experimental results are correlated so as to 
be applicable to any initial pressure and any shape of vessel. 
The correlation is such that a " safe " venting area can be 
defined and a simple equation can be used to calculate its 
value for any required venting pressure. 

APPENDIX I 

It is required to solve equation (14). Since the conditions 
are for constant pressure venting, the factor ptVu-tyYu in the 
first term on the right-hand side of the equation can be taken 
into the integral without appreciable error. Further, this 
integral is multiplied by (yb—yu)/(yb—l) and hence is small 
compared with the term containing the second integral. 

Differentiating this result with respect to n: 

b 1 / r »+(i -«)(n-yJ /yJ^ 

pVr* + 
Yu~ 1 H-nf 

p[(3y„-l)/(2y„)]-v? 

rjf is then obtained using this result and equation (13) to 
eliminate the integrals from the two equations (11), and 
equation (12). Hence: 

y« - i 
Yb 

prj/ = 1 + nb - (1 - n) /><r„-D/r„ Yb ~Yu 
p. 

The two equations given in this appendix can be solved 
simultaneously by a step-by-step process. 

APPENDIX II 

Safe venting area for " spherical " explosions. 

dp 
6.ii 

<4 ^, — a 

// P' Vf 
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If 
*l{Hb) = p0-+ 

35L- * - * - •>« • . 
and the pressure will fall. At some pressure dp/dn will 
change sign and the pressure will rise. However, p cannot 
increase above p0 because, as this value is approached, dp/dn 
must become negative again. 

If <x./(Hb) = pQ~^ rjfo
2, where rjfo is the flame radius when 

the vent opens, the pressure may increase above p0 as the 
flame expands. Also, this may occur if: 

Po~*Vf0* * « / (#*) < p<r* 

Hence, the only true definition for " safe " venting area is: 

ac = Hbp<r*. 
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