

The University of Manchester

Avoiding Engineering Catastrophe: New Insights from Data

23 May 2019

Matt Clay, Moray Kidd (UoM), Tim Boardman, Jim Murphy, Tony Wynn, Steven Naylor, Jo Ellwood

Content

- Overview of Discovering Safety Programme
- Loss of Containment Insights Project
- Data sources & new approaches
- Can occupational safety datasets provide process safety intelligence?
- Limitations of existing data
- Proposals for moving forward
- Feedback & engagement

Discovering Safety Programme

The University of Manchester

Loss of Containment Insights Project

TOXIC RELEASE Bhopal, India 1984 ~3928 official deaths 16,000+?

FIRE & EXPLOSION Buncefield, UK 2005 No deaths ~£1 Bn economic damage

FIRE & EXPLOSION FPSO Cidade de São Mateus, Brazil 2015 9 deaths ~£200M Repair Claim

Video

Focus

- High-consequence, low-frequency events
- Onshore process industy (to begin with)
- Assisting technical risk assessment but wider (e.g. insurance industry)
- Lessons from wider data initiatives e.g. RAMS (Reliability, Availability, Maintainability and Safety) databases.

Stakeholder views

- Supportive of the need for more intelligence to assist with preventing LoC events
- Process industry is diverse with different hazard/risk profile and different needs (e.g. tank farm v pharma manufacture)
- Ongoing challenges as time progresses (e.g. Ageing/Life Extension, new technologies, new fuels, new processes)
- People are 'time poor' so additional new data collection burdens a non-starter.
- "We are proud to have the opportunity of being part of Discovering Safety...we will be willing to support any request that moves forward...and bring along safer operations in our region" Council for Process Safety in Latin America (CSP-LA)

Data

- Initial 'proof of concept' based on HSE's GB data to be expanded later
- HSE's Corporate Operational Intelligence System (COIN)
- Holds records for regulatory interventions more records for 'occupational safety'
- Intended primarily for keeping a site history to inform interventions – very limited analysis/reporting tools in the database
- Loss of Containment data coding improved following Buncefield recommendations.
- Coded and narrative data held.

COIN size

- Company Records 2855
- Sites 10551
- Cases 282846
- Service Orders 65093
- Database Size (Data only) = 432GB
- Document Attachments Size = 1350 GB (1.35TB)
- Data is held for 7 years from the last activity on a case this is a challenge for us
- The above is the total database size LoC relevant entries will be a subset of this – single figure percent if that

© Crown Copyright, HSE 2017

LoC case header

Case Custor 445 N	ner Contact	Status Closed - Inv	Summary	Ltd - DO -	- Escape of flan	Site nma HC
usiness Unit:	HSE01	Health and Safety	Executive	nonymous Caller	E	Secured Case
Customer Infor	mation					
Customer:	N	Limited 🐯 🛒	Powers of En	try Used		
Contact:	N	Limited, 1 🐯 🛒	Notifier Confi	dentiality Rqd 📃		
ob Title:			Customer Re	f. #:	v	/R BU
iite:	HO	1				
ddress Type:		- 1	Address:			
hone Type:	Business		Phone:	0	Ext:	
mail Type:	Business		Email:	a	0	
ontact Method:		~	Contact Deta	ils:		
Problem Inform	ation					
Summary:	N	Ltd - DO - 18/05/2	016 - Escape of flam	mable substances	1	View Case Detail
	During testing a	ctivity nost mainten:	ance a quantity of	was inad	vertently discharg	A A
Description:	to the local efflu	ent system within the	e production unit, thi	was inac was situated extern the environment	nal to the building,	
Category:	RIDDOR			L	ink to EMM1	Parent Case
	DangerOccur		Detail:	Other	Inc	idents Page
Speciality Type:	Durigerooour				Inc	ident Analysis
Speciality Type: Priority:	Low	~	Source:		100	action then Treation
Speciality Type: Priority: Case Status:	Low Closed-InvestC	omp 🗸	Source:		Inv	estigation Tracking

LoC Coded Fields

Case	Customer	Contact	Status	Summary			Site
4	<u>N</u> .	. N	Closed - Inv	r	DO - 18/05/	2016 - Escape of fla	amma HC
Underly	ing Causes					View All I	First 1 of 1 E Last
Underly	ying Causes					Concertainty Baranov	
Mainten	ance Procedure	5					
Safety N	Management Sy	stem Failing				View All	First 🗹 1 of 1 🕑 Last
Safety I	Mgt Systems Fa	iling					
Organis	ing - Communica	ation					
Nature o	of Substance					View All	First 🔄 1 of 1 🕨 Last
Substa	nce		A	rea Affected(Ext	ent/Severity)		
Flamma	ble		P	otent serious dam	nage to prop		
Activity	at Time of Rele	ase				A	
Activity	r					VIEW All 1 mm	
Mainten	ance Planned						
Site of F	(elease					View All	First 1 of 1 Last
Valve or	pen end						
Direct C	ause of Inciden	it				View All	First 🕙 1 of 1 🕑 Last
Cause	of Incident						
Human	Error: Violations	2					
Mitigati	ng Defence Aga	inst Escalatio	n			View All 📶	First 🗹 1 of 1 🗈 Last
Defence	e						
Contain	ed within second	l cont					
Second	ary and/or tertia	iry containme	nt failure causes			View All	First 1 of 1 🕨 Last
Second	lary Containme	nt Failure				A PARAMANA INCOME	
Not App	licable						

Attachments

Case	Customer	Contact	Status Closed - Inv	Summary Spillage of petrol at -	ne Zone	April 2013	
amman	of Notes						
ttachm	ents Summary	1		1105-contraction	Castonice Find dil	First 🗄 1-15 of 15 🗵 Last	
are Nam				Description	Added By	Date Added	Associated Note
MM T	<u>. 00</u>	31-5-13.doc		emm1 for 2000 DO 4324335	case	10/05/2013 11:14 BST	
D	angerous Occ	urrence case 43	24335 inv report	DOC report	335 inv	10/05/2013 11:14 BST	
0	angerous Occ	urrence odf		Occurrence pdf		10/05/2013 11:14 BST	
derim (to to re	DO 4324335.p	a,	interim L to rent f re 4324335	DO	10/05/2013 11:14 BST	
to 9 May	2013 pdf	Barriel DO	4324335 _	L to the contracto	s 199	10/05/2013 11:14 BST	
SA-FS	A-Guidelines Fi	ange-Gaskets-00	9 98 ENG.pdf	ESA-FSA-Guideline Gaskets	s-Flange-	10/05/2013 11:14 BST	
1 720	Management o	at the integrity o	6 Bolled Joints pr	El Guidelines	-	10/05/2013 11:14 BST	
to a	re DO 432	24335 15 July 2	013.pdf	L to	24335 15	16/07/2013 11:03 BST	Visit report(s)
1	w Report -	final pd	1	ME Inv Report		16/07/2013 11:03 BST	Visit report(s)
	ponse email i	aus 29-8-13.doc		Email and attachme	nts 29-8-	17/09/2013 14:48 BST	Visit report(s)

Copyright, HSE 2017

Emerging findings

- Some good data in the coded fields useful findings for industry in terms of taxonomy
- Small data size (N=~670) due to
 - Short data retention policy (~7 years)
 - Coded data only collected from RIDDOR Dangerous Occurences not other data (e.g. LoC events causing injury)
- Much more value in the unstructured data text mining required.
- Huge value in the associated attachments but significant challenges around lack of consistent structure and depth
- Some attachments are 'flattened' PDF with no OCR text associated (e.g. scanned investigation reports) etc.

Underlying causes

Plant item (ageing plant cases)

Occupational & Process Safety

"...the presence of an effective personal safety management system does not ensure the presence of an effective process safety management system." [Baker Panel, 2007]

Does this area exist? How big is it? What are the limitations of the overlap?

Gold in them hills?

Example 1

One employee sustained burns to their ankles when a high temperature and caustic liquid mixture flowed over their chemical resistant shoes and came into contact with their ankles. This resulted in several weeks off work, but the individual is expected to make a full recovery. The incident was reported to HSE as a RIDDOR over seven-day injury accident.

The incident occurred during a post-reaction cleaning operation on a chemical reactor when the vessel was being filled with a caustic cleaning solution whilst agitation and heating were applied. The intention was to heat the solution to approximately 65°C and to fill the vessel to 90% capacity. Level control was due to be achieved by manual dipping. Temperature control was also monitored manually, as the vessel had no instrumentation and no high-level alarms fitted. There was some confusion as to whether the vessel needed to be filled to 100% capacity to clean the upper levels of the vessel and fittings.

The incident occurred when either level control was lost and the vessel was overfilled onto the upper reactor floor, or when temperature control was lost and boiling occurred. In addition to the lack of instrumentation, there was also no written operating procedure for reactor cleaning operations at the time of the incident.

This injury accident, whilst only briefly outlined here, clearly provides process safety insight in respect of process plant design as well as operational procedures. Failure to achieve level and temperature control in the process industry has been associated with many major accidents causing on and off-site implications.

Gold in them hills?

Example 2

One employee sustained superficial burns to their face following a short duration flash fire resulting in approximately two weeks off work on medical advice. This was reported to HSE as a RIDDOR over seven-day injury. Had no injury occurred this incident would not have needed to be reported as a DO since it would not meet the criteria for a process fire as it did not result in 24-hour plant stoppage.

The incident occurred when the employee was adding a powder to a reactor which already contained significant quantities of the solvent Methyl Ethyl Ketone (MEK) which had recently been 'splash filled' into the reactor contrary to company recognised good practice. The powder was dispensed directly from the polymer bag it was supplied in and it is believed this may have created a static spark which ignited the solvent vapours present in the reactor following the splash loading of solvent. The area around the reactor port was designated an explosive atmospheres (ATEX) zone 1 area and there is no evidence of any unsuitable equipment having been brought into this zoned area prior to the ignition. The process operator filling the vessel was wearing anti-static footwear. Once ignition occurred, a flash fire resulted at the reactor port causing superficial burns to the operator who was standing upright decanting the powder. The fire was rapidly and completely extinguished by a second process operator closing the reactor lid shut.

Clearly this is another injury accident with the potential to have escalated into a large-scale process safety event given the large amount of solvent present in the reactor and the presence of other adjacent processes and employees.

Summary & next steps

- LoC events continue to be a problem around the world
- There is a demonstrable need to improve intelligence available to prevent LoC events
- We have credible data available now
- Any successful initiative must not impose new data collection burdens on field based personnel
- This means that the analysis of unstructured data, including data not deliberately created for process safety reasons is important.
- We are now in a position to commence analysis techniques based on HSE's data, present to stakeholders and expand/iterate.

Engagement / questions

- Register for updates on the project/programme at <u>discoveringsafety@hse.gov.uk</u>
- General feedback and suggestions welcomed
- Signposts to global sources of process safety intelligence even if badly structured/exploited particularly onshore data and data within emerging economies
- Sharing your experiences of the challenges experienced in-company or across-sector which have arisen in respect of data collection, analysis and sharing of process safety learning.
- Types of insights which would be most valuable to emerge from the work for example what process safety questions would users most want answered from robust analysis?
- What type of sustainable model would enable the sharing of intelligence on a sustainable and userfriendly basis?