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Overview
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Overview & Aims

• This paper describes CFD modelling conducted by HSE as part of 
the Hydrogen and Fuel Cell (H2FC) European Infrastructure 
project 

• Primary aims of the work were:
– to assess the use of a pseudo-source to model jets from non-circular 

openings 

– to consider the impact of nozzle shape on H2 dispersion from 
underexpanded jets

• H2 jets from circular and rectangular nozzles with aspect ratios 
of 2, 4 and 8 were considered
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Overview & Aims

• Round jet data of Ruggles & Ekoto (2012) was used to validate 
the CFD modelling 

• Remainder of the study considers comparative behaviour of jets 
from different nozzles:
– Flammable volume (taken as the volume with ½ LFL < concn < UFL)

– Hazard distance (downstream distance to ½ LFL)

• Hazard quantity predictions from the CFD model were also 
compared to tools produced by HSE:
– Quadvent 2.0 (HSL, 2016a)

– H2FC FreeJet (HSL, 2016b)
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CFD Modelling Approach
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CFD Modelling Approach – Overview 

• ANSYS CFX 16.0 (2015) was used for this study

• Hydrogen jets with a stagnation-to-ambient pressure ratio of 
10:1 were modelled

• Jet releases were simulated directly from the orifice in 3D:
– 1.5 mm circular orifice (base case) 

– Rectangular openings with AR=2, 4 & 8

• A two-stage approach was used in the modelling due to large 
differences in cell residence time

• A pseudo source model was also used
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CFD Modelling Approach – Jet Source

• The round jet base case was modelled using the conditions 
given by Ruggles & Ekoto (2012)

• The rectangular orifice cases were modelled with the same 
mass flow rate and cross-sectional area as the base case

Ambient Stagnation Nozzle Exit

Pressure (kPa) 98.37 983.20 515.40

Temperature 

(K)
296.0 295.4 244.8

Velocity (m/s) N/A N/A 1202.7

Ruggles & Ekoto (2012) Data

𝑃𝑛𝑜𝑧𝑧𝑙𝑒
𝑃𝑎𝑚𝑏𝑖𝑒𝑛𝑡

> 1.9

⇒ underexpanded jet
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CFD Modelling Approach – Pseudo Source

• Underexpanded jets occur when the ratio between the nozzle 
exit and ambient pressures exceeds a critical value, ~1.9 for H2

• Resulting flow is characterised by a barrel-shaped expansion 
region close to the nozzle

M = 1 M > 1 M < 1

Mach Disc

Barrel Shock

Reflected Shock

Flow Boundary

• Pseudo sources often used 
to model release 
downstream of the shock

• One widely used approach is 
that of Ewan & Moodie 
(1986)
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CFD Modelling Approach – Pseudo Source

• The Ewan & Moodie (1986) pseudo source has the same 
conditions as the nozzle exit in terms of:
– mass flow rate

– velocity

– temperature

• The release area is then modified to account for jet expansion:

𝐴𝑠𝑜𝑢𝑟𝑐𝑒 = 𝐴𝑛𝑜𝑧𝑧𝑙𝑒
𝑃𝑛𝑜𝑧𝑧𝑙𝑒
𝑃𝑎𝑚𝑏𝑖𝑒𝑛𝑡

• Conditions at the nozzle exit are approximated assuming 
isentropic expansion from the stagnation conditions
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CFD Modelling Approach – Pseudo Source

• The Ewan & Moodie (1986) pseudo source is positioned twice 
the length of the barrel shock downstream of the nozzle:

𝐿 = 2 × 0.77𝑑 + 0.068𝑑1.35
𝑃𝑛𝑜𝑧𝑧𝑙𝑒
𝑃𝑎𝑚𝑏𝑖𝑒𝑛𝑡

• Here 𝐿 is the distance of the pseudo source downstream of the 
nozzle and 𝑑 is the nozzle diameter, both in units of mm

• For the Ruggles & Ekoto (2012) jet the pseudo source has/is:
– 3.4 mm diameter

– 3.5 mm downstream of nozzle
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CFD Modelling Approach – Domain

• The jets were simulated in two stages:
– Stage 1: Nozzle to 0.25 m

– Stage 2: 0.25 m to 3.5 m 

• Allows for greater mesh resolution close to nozzle and barrel-
shaped expansion region 

• A more coarse mesh can be used further downstream

• Keeps overall mesh size down – adaptive mesh refinement 
would be an alternative way to achieve this

• Approach is similar to that used by others, e.g. Xu et al. (2005) 
and Makarov & Molkov (2010)
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CFD Modelling Approach – Domain

• Conditions at the downstream boundary of Stage 1 are 
exported and used as an inflow condition for Stage 2 modelling

0.25 m

0.1 m

0.1 m

3.5 m

1.0 m

1.0 m

Near-field jet structure Far-field H2 dispersion
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CFD Modelling Approach – BC’s

• A 0.5 m/s co-flow imposed on the upstream domain boundary 

• The domain was also initialised with the same flow condition

• The remaining domain boundaries were assigned as fixed 
pressure entrainment boundaries at ambient pressure

• The jet inlet was defined with 10% turbulence intensity
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CFD Modelling Approach – Sub-models

• The following sub-models were used in the CFD model set up:
– Turbulence: standard k – ε model

– Heat transfer: ANSYS CFX 16.0 Total Energy model

– Solver: ANSYS CFX 16.0 High Speed Numerics

– H2 distribution: multi-component fluid, scalar transport equation

– Buoyancy: ANSYS CFX 16.0 full buoyancy model

• Sensitivity analyses were undertaken to assess the impact of:
– Mesh resolution: near and far field

– Choice of turbulence model

– Imposed BCs: co-flow velocity and inlet turbulence intensity
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CFD Model Validation 
& Sensitivity Analyses
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CFD Model Validation

• CFD model of base case validated against Ruggles & Ekoto 
(2012) data:
– Near-field H2 concentration

– Mach disc size and location

• Three different mesh resolutions 
also tested in a grid sensitivity 
study

• Little variation between meshes 
and good agreement with the 
measured H2 concentrations
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Sensitivity Analyses – Mesh Resolution

Mesh 
Total Node 

Count

Nodes Resolving 

Jet Inlet

Coarse 0.3 million 150

Medium 1.0 million 360

Fine 3.8 million 560

Coarse Medium Fine

• Matrix of 9 simulations with 
coarse, medium and fine 
meshes in the near and far 
field
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Sensitivity Analyses – Mesh Resolution

M = 1 M > 1 M < 1

Mach Disc

Barrel Shock

Reflected Shock

Flow Boundary

• Measured Mach disc size and 
location shown by black lines (left)
– Diameter = 1.3 mm

– Downstream position = 3.05 mm
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Sensitivity Analyses – Mesh Resolution

• Mesh sensitivity analysis gave the following ranges of predicted 
hazard quantities:
– Flammable volume: 0.141 – 0.156 m3 

– Hazard distance: 2.73 – 2.75 m

• Largest flammable volume predicted using coarse meshes for 
both simulation stages

• Impact of mesh resolution on predicted hazard distance is 
minimal

• Coarse mesh resolutions used for both the near- and far-field 
simulations with rectangular nozzle releases
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Sensitivity Analyses – Turbulence Model

• Sensitivity to the choice of turbulence model also tested 

• Four models were assessed:
– Standard k – ε model (ANSYS CFX 16.0 formulation)

– Shear Stress Transport (SST) model (ANSYS CFX 16.0 formulation)

– Sarkar-corrected k – ε model (Sarkar et al., 1991)

– Diffusion-corrected k – ε model (Pope, 1978; Smith et al., 2004)

• Each model was used to simulate the Ruggles & Ekoto (2012) 
jet using coarse mesh resolutions
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Sensitivity Analyses – Turbulence Model

• Results show that the 
standard k – ε model results 
agree most closely with 
measurements

• SST model slightly under-
predicts H2 concentrations

• The diffusion corrected 
models over-predict 
centreline H2 concentration 
significantly
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CFD Modelling Results
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Results – Comparison of Nozzle Shapes

• Nozzle shape has a 
significant influence on 
near-field jet structure 

• The circular jet is 
axisymmetric

• The slot jets exhibit an 
asymmetric shape

• 90  ̊axis switching: 
major and minor axes 
are reversed

1.5 mm 
Circular

AR 2

AR 4 AR 8
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Results – Comparison of Nozzle Shapes

Round jet: 1.5 mm diameter Slot jet: aspect ratio = 8
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Results – Comparison of Nozzle Shapes

Centreline H2

concentration decay
Radial H2 profile at 0.03 m 

(Z/r = 20) downstream
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Results – Hazard Predictions

1.5mm 

Round
AR 2 Slot AR 4 Slot AR 8 Slot

Pseudo 

Source

Quadvent 

2.0
FreeJet

Hazard 

Distance 

(m)

2.73 2.72 2.72 2.72 3.18 2.78 3.36

Hazard 

Volume 

(m3)

0.153 0.152 0.150 0.151 0.281 0.277 0.210

• The three slot jets and the round jet base case gave very similar 
hazard quantities

• Using the pseudo source approach gives conservative hazard 
quantity predictions

• Both Quadvent 2.0 and FreeJet also give conservative results
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Discussion & Conclusions



© Crown Copyright, HSE 2019 

Conclusions

• Mesh sensitivity analysis shows:
– A fine mesh is required to capture the barrel shock and Mach disc

– Resolution of near-nozzle flow has little impact predicted hazard 
quantities

• Nozzle shape significantly affects near-field dispersion:
– Jets exiting rectangular openings exhibit 90 ° axis switching 

– Slot jets initial have lower centreline concentration than round jets

– Releases from rectangular openings are initially asymmetric

• Far-field results are not affected greatly by the nozzle shape
– Slot jets become axisymmetric around 120 nozzle diameters 

downstream

– Predicted distance to ½ LFL and flammable volume were unaffected by 
the orifice shape
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Conclusions

• Ewan & Moodie (1986) pseudo source gives conservative 
predictions of the flammable volume and distance to ½ LFL

• Compared to the jets modelled directly from the orifice, the 
pseudo source model gave:
– ~15% greater distance to ½ LFL

– ~85% larger flammable volume

• Using a pseudo source can be considered as an appropriate 
means of modelling underexpanded jet releases from non-
circular holes
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