Hazards 29 Birmingham, 22-24th May 2019

CFD Modelling of Underexpanded Hydrogen Jets Exiting Rectangular Shaped Openings

James Stewart

Health & Safety Executive, Buxton, SK17 9JN, U.K.

The work described in this paper was undertaken as part of the H2FC Integrating European Infrastructure project, with co-funding from the Health and Safety Executive (HSE) and the European Commission (Grant No. 287855). The contents of the publication, including any opinions and/or conclusions expressed, are those of the author alone and do not necessarily reflect HSE policy.

Contents

- Overview & Aims
- CFD Modelling Approach
 - Overview
 - Jet Source
 - Pseudo Source
 - Domain size and simulation setup
 - Sub-models
- CFD Model Validation
 - Experimental details
 - Model setup
 - Results

- Model Sensitivity Analyses
 - Mesh resolution
 - Turbulence model selection
 - Boundary conditions
- Results
 - Comparison of nozzle shapes
 - Hazard predictions
 - Use of a pseudo-source
 - Inter-model comparison
- Conclusions

Overview

- This paper describes CFD modelling conducted by HSE as part of the Hydrogen and Fuel Cell (H2FC) European Infrastructure project
- Primary aims of the work were:
 - to assess the use of a pseudo-source to model jets from non-circular openings
 - to consider the impact of nozzle shape on H₂ dispersion from underexpanded jets
- H₂ jets from circular and rectangular nozzles with aspect ratios of 2, 4 and 8 were considered

Overview & Aims

- Round jet data of Ruggles & Ekoto (2012) was used to validate the CFD modelling
- Remainder of the study considers comparative behaviour of jets from different nozzles:
 - Flammable volume (taken as the volume with $\frac{1}{2}$ LFL < concⁿ < UFL)
 - Hazard distance (downstream distance to ½ LFL)
- Hazard quantity predictions from the CFD model were also compared to tools produced by HSE:
 - Quadvent 2.0 (HSL, 2016a)
 - H2FC FreeJet (HSL, 2016b)

CFD Modelling Approach

- ANSYS CFX 16.0 (2015) was used for this study
- Hydrogen jets with a stagnation-to-ambient pressure ratio of 10:1 were modelled
- Jet releases were simulated directly from the orifice in 3D:
 - 1.5 mm circular orifice (base case)
 - Rectangular openings with AR=2, 4 & 8
- A two-stage approach was used in the modelling due to large differences in cell residence time
- A pseudo source model was also used

- The round jet base case was modelled using the conditions given by Ruggles & Ekoto (2012)
- The rectangular orifice cases were modelled with the same mass flow rate and cross-sectional area as the base case

	Ambient	Stagnation	Nozzle Exit	
Pressure (kPa)	98.37	983.20	515.40	
Temperature (K)	296.0	295.4	244.8	
Velocity (m/s)	N/A	N/A	1202.7	

 $\frac{P_{nozzle}}{P_{ambient}} > 1.9$

\Rightarrow underexpanded jet

Ruggles & Ekoto (2012) Data

- Underexpanded jets occur when the ratio between the nozzle exit and ambient pressures exceeds a critical value, ~1.9 for H₂
- Resulting flow is characterised by a barrel-shaped expansion region close to the nozzle
- Pseudo sources often used to model release downstream of the shock
- One widely used approach is that of Ewan & Moodie (1986)

- The Ewan & Moodie (1986) pseudo source has the same conditions as the nozzle exit in terms of:
 - mass flow rate
 - velocity
 - temperature
- The release area is then modified to account for jet expansion:

$$A_{source} = A_{nozzle} \left(\frac{P_{nozzle}}{P_{ambient}} \right)$$

• Conditions at the nozzle exit are approximated assuming isentropic expansion from the stagnation conditions

• The Ewan & Moodie (1986) pseudo source is positioned twice the length of the barrel shock downstream of the nozzle:

$$L = 2 \times \left[0.77d + 0.068d^{1.35} \left(\frac{P_{nozzle}}{P_{ambient}} \right) \right]$$

- Here *L* is the distance of the pseudo source downstream of the nozzle and *d* is the nozzle diameter, both in units of mm
- For the Ruggles & Ekoto (2012) jet the pseudo source has/is:
 - 3.4 mm diameter
 - 3.5 mm downstream of nozzle

- The jets were simulated in two stages:
 - Stage 1: Nozzle to 0.25 m
 - Stage 2: 0.25 m to 3.5 m
- Allows for greater mesh resolution close to nozzle and barrelshaped expansion region
- A more coarse mesh can be used further downstream
- Keeps overall mesh size down adaptive mesh refinement would be an alternative way to achieve this
- Approach is similar to that used by others, e.g. Xu et al. (2005) and Makarov & Molkov (2010)

- A 0.5 m/s co-flow imposed on the upstream domain boundary
- The domain was also initialised with the same flow condition
- The remaining domain boundaries were assigned as fixed pressure entrainment boundaries at ambient pressure
- The jet inlet was defined with 10% turbulence intensity

• The following sub-models were used in the CFD model set up:

- Turbulence: standard $k \varepsilon$ model
- Heat transfer: ANSYS CFX 16.0 Total Energy model
- Solver: ANSYS CFX 16.0 High Speed Numerics
- H₂ distribution: multi-component fluid, scalar transport equation
- Buoyancy: ANSYS CFX 16.0 full buoyancy model
- Sensitivity analyses were undertaken to assess the impact of:
 - Mesh resolution: near and far field
 - Choice of turbulence model
 - Imposed BCs: co-flow velocity and inlet turbulence intensity

CFD Model Validation & Sensitivity Analyses

CFD Model Validation

- CFD model of base case validated against Ruggles & Ekoto (2012) data:
 - Near-field H₂ concentration
 - Mach disc size and location
- Three different mesh resolutions also tested in a grid sensitivity study
- Little variation between meshes and good agreement with the measured H₂ concentrations

Sensitivity Analyses – Mesh Resolution

 Matrix of 9 simulations with coarse, medium and fine meshes in the near and far field

Medium

Fine

Sensitivity Analyses – Mesh Resolution

- Measured Mach disc size and location shown by black lines (left)
 - Diameter = 1.3 mm
 - Downstream position = 3.05 mm

- Mesh sensitivity analysis gave the following ranges of predicted hazard quantities:
 - Flammable volume: $0.141 0.156 \text{ m}^3$
 - Hazard distance: 2.73 2.75 m
- Largest flammable volume predicted using coarse meshes for both simulation stages
- Impact of mesh resolution on predicted hazard distance is minimal
- Coarse mesh resolutions used for both the near- and far-field simulations with rectangular nozzle releases

- Sensitivity to the choice of turbulence model also tested
- Four models were assessed:
 - Standard $k \varepsilon$ model (ANSYS CFX 16.0 formulation)
 - Shear Stress Transport (SST) model (ANSYS CFX 16.0 formulation)
 - Sarkar-corrected $k \varepsilon$ model (Sarkar et al., 1991)
 - Diffusion-corrected $k \varepsilon$ model (Pope, 1978; Smith et al., 2004)
- Each model was used to simulate the Ruggles & Ekoto (2012) jet using coarse mesh resolutions

Sensitivity Analyses – Turbulence Model

- Results show that the standard k – ε model results agree most closely with measurements
- SST model slightly underpredicts H₂ concentrations
- The diffusion corrected models over-predict centreline H2 concentration significantly

CFD Modelling Results

Results – Comparison of Nozzle Shapes

HSE

- Nozzle shape has a significant influence on near-field jet structure
- The circular jet is axisymmetric
- The slot jets exhibit an asymmetric shape
- 90° axis switching: major and minor axes are reversed

Results – Comparison of Nozzle Shapes

Round jet: 1.5 mm diameter

Slot jet: aspect ratio = 8

Results – Comparison of Nozzle Shapes

- The three slot jets and the round jet base case gave very similar hazard quantities
- Using the pseudo source approach gives conservative hazard quantity predictions
- Both Quadvent 2.0 and FreeJet also give conservative results

	1.5mm Round	AR 2 Slot	AR 4 Slot	AR 8 Slot	Pseudo Source	Quadvent 2.0	FreeJet
Hazard Distance (m)	2.73	2.72	2.72	2.72	3.18	2.78	3.36
Hazard Volume (m3)	0.153	0.152	0.150	0.151	0.281	0.277	0.210

Discussion & Conclusions

Conclusions

- Mesh sensitivity analysis shows:
 - A fine mesh is required to capture the barrel shock and Mach disc
 - Resolution of near-nozzle flow has little impact predicted hazard quantities
- Nozzle shape significantly affects near-field dispersion:
 - Jets exiting rectangular openings exhibit 90 ° axis switching
 - Slot jets initial have lower centreline concentration than round jets
 - Releases from rectangular openings are initially asymmetric
- Far-field results are not affected greatly by the nozzle shape
 - Slot jets become axisymmetric around 120 nozzle diameters downstream
 - Predicted distance to ½ LFL and flammable volume were unaffected by the orifice shape

Conclusions

- Ewan & Moodie (1986) pseudo source gives conservative predictions of the flammable volume and distance to ½ LFL
- Compared to the jets modelled directly from the orifice, the pseudo source model gave:
 - ~15% greater distance to ½ LFL
 - ~85% larger flammable volume
- Using a pseudo source can be considered as an appropriate means of modelling underexpanded jet releases from noncircular holes

References

ANSYS, 2015, ANSYS CFX Solver Theory Guide Release 16, ANSYS Inc., January 2015

Ewan, B.C.R., and Moodie, K., 1986, Structure and velocity measurements in underexpanded jets, *Combustion Science and Technology*, **45** (5-6), 275-288

Health and Safety Laboratory (HSL), 2016a, H2FC Sage Framework – Free Jet Model

Health and Safety Laboratory (HSL), 2016b, Quadvent 2.0,

Makarov, D. and Molkov, V., 2010, Structure and concentration decay in supercritical plane hydrogen jet, 8th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE), Keio University, Yokohama, Japan

Pope, S.B., 1978, An explanation of the turbulent round-jet/plane-jet anomaly, AIAA Journal, 16 (3), 279-281

Ruggles, A.J. and Ekoto, I.W., 2012, Ignitability and mixing of underexpanded hydrogen jets, *International Journal of Hydrogen Energy*, **37** (22), 17549-17560

Sarkar, S., Erlebacher, G., Hussaini, M.Y. and Kreiss, H.)., 1991, the analysis and modelling of dilatational terms in compressible turbulence, *Journal of Fluid Mechanics*, **227**, 473-493

Smith, E.J., Mi, J., Nathan, G.J. and Dally, B.B., 2004, Preliminary explanation of a "Round jet initial condition anomaly" or the k- ϵ turbulence model, *15th Australasian Fluid Mechanics Conference*, The University of Sydney, Sydney, Australia, 13-17th December 2004

Xu, B.P., Zhang, J.P., Wen, J.X., Dembele, S. and Karwatzki, J., 2005, Numerical study of a highly under-expanded hydrogen jet, *International Conference on Hydrogen Safety*, 8-10th September 2005, Pisa, Italy

