Supply Chain Management for Palm Oil Industry

DDr LAM, Hon Loong PhD (Chemical Engineering); PhD (I.T.)

Part I: Network Synthesis

Network Management

- Integrated planning of the activities in a supply chain
- Planning and control of flow of goods, services, money, and information
- Allows customers and suppliers to partner together
 - Maximize responsiveness and flexibility
 - Reducing costs and paperwork
 - Gain sustainable competitive advantage

Objectives of Network Management

- Examine the netowk participants
- Acknowledge the interrelationships among business processes that support the network
- Recognize how business intelligence tools are used in decision analysis

- Can be maintained by manufacturer
 - Continuous replenishment
 - Can link into POS systems
- Cross-docking
- Creates linkages between supplier and retailer
 - Lower costs
 - Better customer service
 - Increased profitability
- Information sharing along supply chain
 - Translates sales transactions into production processes and material requirements

Network Relationships

continued

- Benefits
 - Cost reduction
 - Inventory reduction
 - Cycle time improvement
 - Improved customer service
- Integration requires commitment to strategy, process, organization, and technology
 - What linkages should be established
 - Communications
 - Data integration

Process Network Synthesis

- Process Network Synthesis (PNS) is the combination of all feasible process pathways and solutions creates a huge super structure.
- Objective: optimum solution and flexible alternative solution is always challenging.

Start from a simple example: Coffee making

Raw materials, intermediates, products

A guide to the finer points of coffee-making, using six common brew methods

Pour-over brewer Pros: Inexpensive, brew one cup or a whole carafe Cons: Labor intensive

Cons: Labor intensive, coffee cools down fast Tip: Achieve best brew temperature C (195 to 205 degrees Fahrenheit) by waiting a moment before pouring the boiled water

Espresso maker Pros: Makes strong coffee Cons: Complicated to use and clean Tip: Consider splurging on a high-quality grinder instead of a pricey brew machine

Drip coffee maker Pros: Convenient, some people like an automatic timer Cons: If water isn't hot enough, taste is diminished Tip: Be sure to keep it clean

Electric percolator Pros: Brews very hot coffee Cons: High temperature can eradicate delicate coffee notes Tip: Limit how long coffee sits in machine Mike Sudal/The Wall Street Journal

Make your Coffee now!

Key answer to Network solution: 5W Why, Where, Who, What, How

Generic superstructure

Part 2: Basic linear programming for PNS IChemE

Basic Network Model

Algebraic Representation

- Indices (or sets):
- i = plants
- j = markets

Given Data (or parameters):

- a_i = supply of commodity of plant *i* (in cases)
- b_j = demand for commodity at market *j* (cases)
- c_{ij} = cost per unit shipment between plant i and market j (\$/case)

Minimise: Transportation cost Subject to: Demand satisfaction and supply constraints

What do we need as input ?

Distance/ Transportation cost

Supply

Demand

Part 3: Introduction to P-graph

Introduction to P-Graph

Prof Friedler Ferena

P-graph vs Unit operations

Introduction

Difference between MSG/ SSG?

There are two reactions pathway to produce Desired Product "C"

≻ Reaction 1: A→C

≻ Reaction 2: $A + B \rightarrow C + D$

Introduction

Difference between MSG/ SSG?

There are two reactions pathway to produce Desired Product "C"

- ≻ Reaction 1: A→C
- ≻ Reaction 2: $A + B \rightarrow C + D$

Play a game: Construct a complete process network

Operating units (unit operations):

Product: A

Raw materials: E, G, J, K, L

Maximal 8

How many feasible solutions?

All feasible networks

Slide 34

Solution #18

Solution #19

Ancing MICAL NEERING

Can we draw a P-graph representation for this

Part 4: Implementation of P-graph Solution

Examples of PNS problem: Biomass Network

P-graph Presentation

Biomass Process Network

Department of Computer Science and Systems Technology, University of Pannonia P-Graph Studio

Name: P-Graph Studio

Version: 4.0.2.1

Publisher: Department of Computer Science and Systems Technology, University of Pannonia

The following prerequisites are required:

- Microsoft .NET Framework 4.5.1 (x86 and x64)
- Windows Installer 4.5

Click the button below to install the prerequisites and run the application.

Instal

P-graph Studio 4.0 Installation: Download from pgraph.dcs.uni-pannon.hu

Separation

Create a P-graph for:

 1) 10 kg of Mixture A will be separated into B(5.5kg) and C(3.8kg) and 2kg of CO2 by a separator
 2) What are the output of 500t of Mixture A being separated in the same unit

Mixing

Create a P-graph for:

- 1) 10 kg of A(RM1.50 per kg) will be compressed as pellets (9kg)
- 2) 10 kg of B (RM 1.80 per kg) will be cut and dried up as chips (9.5kg)
- 3) A burner is used to burn 15kg of biomass to heat up water.
- 4) What are the solution?

Recycling

Create a complete recycle network for this example:

Maximum flow vs. Required flow

Lower vs. Upper Capacity

Working Session: Biorefinary Solution

Utilization of paddy biomass (rice husk) Availability : 100 t/y

Purchasing Price: \$24.38/t

≻3 possible tech:

- 1. Combustion in boiler to produce steam, and utilized the steam to generate electricity
- 2. Fast pyrolysis to produce syngas, biochar, and py-oil
- 3. Slow pyrolysis to produce syngas and biochar

Conversion

Tech	Conversion	Elec Requirement
1	Boiler : 4.787t HP Steam/t rice husk Turbine: 0.91t MP Steam/t HP Steam 0.58 kW/ t HP Steam	
2	0.26 t biochar/t rice husk 210 dm ³ syngas/t rice husk 530 dm ³ py-oil/t rice husk	120 kW/t rice husk
3	0.36 t biochar/t rice husk 640 dm ³ syngas/t rice husk	90 kW/t rice husk

Material and operating units...

Material	Price
Electricity	Importing price: \$0.14 /kW Exporting price: \$0.11/kW
Bio-char	\$350/t
Syngas	\$0.122/dm ³
Py-oil	\$0.25/dm ³

Op. Unit	Operating Cost	Capital Cost	
Boiler		\$ 12.44/t rice husk	
Turbine		\$ 0.03/t HP Steam	
Fast.p	\$14.38/t rice husk	\$157.5/ t rice husk	
Slow.p	\$4.45/t rice husk	\$95.8/t rice husk	E

Generate your MSG in PNS draw now!

Convert it to PNS file and key in the info

Answer the questions:

- 1. How many possible solutions?
- 2. List out the best and 2nd best solutions
- 3. Set a capacity constraint of 20 t for slow pyrolyzer, how does it affect your solutions?
- 4. If the demand of py-oil is 20 dm³, how does it affect your answer?
- 5. Now add another new raw material (bagasse), it can be sent to boiler+turbine, try to reconstruct the MSG in PNS Draw (no need do in PNS studio)

Thank you for your attention

honloong.lam@nottingham.edu.my