

The Truth about Palm Oil | Palm Oil Milling Initiatives

Chew Chien Lye @ Mervin Research & Development, Sime Darby Plantation Berhad June 17, 2019

OUTLINE

The Company

> Sime Darby Plantation – An Integrated Plantation Company

The Truth about Palm Oil

- > Current Scenario & Challenges
- > Facts about Palm Oil

Palm Oil Milling Initiatives

- > Overview on Milling Processes & Performance
- > Current Challenges & Research Prospect
- > Technological Development

The Company

Sime Darby Plantation

An Integrated Plantation Company

Business Overview

Integrated Plantation Company

Upstream

Oil palm estate

Mill

Oil palm, rubber & sugarcane estates

 Developing, cultivating and managing oil palm, rubber and sugarcane plantation estates

Milling of FFB and processing & sales

- Milling of FFB into CPO and PK
- Processing and sales of rubber and sugarcane

Others

Cattle rearing and beef production

Downstream

Refinery

Food application

Bulk and refined oils & fats

 Production and sales of refined oils and fats (which includes specialty and end-user oils and fats)

Oleochemicals, biodiesel products & derivatives

 Production and sales of oleochemicals, biodiesel products and derivatives

Others

High-yielding

aenome seeds

Renewables

R&D

 Focused on yield and productivity improvements, increasing revenue streams and developing sustainable practices while pursuing innovative strategies

Renewables business

 Development of green technology and renewable energy which includes bio-based chemicals, biogas and composting

Agribusiness

 Provision of agriculture products and services

Sime Darby Plantation R&D Centre

Units & Roles

Plantation Research & Advisory

Provide technical support to maximize yield & productivity:

- Continuous improvement in agro-management practices
- Reduction in chemical inputs through IPM, biofertilsers & biopesticides
- Improve nutrient & water use efficiency

Biotechnology & Breeding

Breeding for continuous improvement in yield & other desirable economic traits:

- Marker assisted breeding program
- Optimisation production & performance of oil palm clones

Advanced Agricultural Tech

Developing new technologies to support R&D and Plantation operations:

- Labour reduction through mechanisation & automation
- Precision Agriculture Data analytics

Processing Technology

Audit & Advisory to maximise mill & refinery product recovery:

- Continuous improvement in processing technology to improve efficiency & cost
- Towards zero waste
- Waste to wealth initiatives

Sime Darby Seeds & Agricultural Services Production & sale of elite planting materials Agro-technology and management services to external parties

Innovation Centres

Provide technical service to all global customers, develop new products and provide technical support to refineries

Minamas Research Centre Liberia Research Centre OPRS Dami Regional research centres providing similar functions as PRA & Breeding for the local estates.

Upstream Portfolio Spread Across 5 Countries

Snapshot – Downstream Operation

Note: 😑 Bulk Processing 🔵 Differentiated Food

* Excluding Industrial Enterprises (IE) Soya in Thailand and GH Nhabe in Vietnam Figures as at 30 June 2018

COPYRIGHT©2019 SIME DARBY RESEARCH SDN. BHD. ALL RIGHTS RESERVED.

Refined bulk products produced by the Group's bulk refineries: RBD Olein, RBD Stearin, CPKO, RBD PKO, etc. Ingredients produced by the Group's refineries: Bakery fats, specialty oils, confectionery fats

Non-food products produced by the Group's biodiesel, oleochemicals and nutrition plants

The Truth about Palm Oil

Current Scenario & Challenges

Facts of Oil Palm

Rang-tan, the story of dirty palm oil

Facts about palm oil?

Source: YouTube

Play it!

Negative Perception: Anti-Palm Oil Campaign

Changing Perception : Love MY Palm Oil

Malaysia launches "Love MY Palm Oil" campaign in the face of Europe's antipalm oil stand

By Anna Maria Romero - January 11, 2019

24 March 2019 at Sime Darby Plantation, Carey Island, Selangor.

Home > Business

3 minute read

MAHB, Malaysia Airlines, AirAsia and Malindo to help promote palm oil

Indonesia and Malaysia unite to fight EU's ban on palm oil

3 minute read

The Truth

COPYRIGHT©2019 SIME DARBY RESEARCH SDN. BHD. ALL RIGHTS RESERVED.

Sime

Immense Health Benefits of Palm Oil

A healthier, high-carotene & trans-fat free alternative

Source: MPOC

Sime Darby

Plantation

Global Vegetable Oil Demand & Supply

Population Growth is a Key Driver

Note: Europe consumption per capita for EU-28 only, excludes Russia & Eastern Europe countries

Source: LMC Oilseeds & Oils Report 2016, United Nations, USDA

14

Immense Opportunities Await...

- Growing population (9.7 bil by 2050) + increased life expectancy, raising concerns over Food Security, Food Safety and Sustainability
- Global oils and fats consumption expected to increase
 - From 180 mil MT to 250 mil MT in the future
- Dr. James Fry's study in 2013 that the world will lose 145 million Ha of Forest land by the year 2050 to feed the 9.7 billion people if it uses other edible oils such as Soya, Sunflower, Rapeseed etc.
- With Oil Palm it will be less than 10 14 million Ha.

Source: James Fry (2016). What are the implications of a halt to all expansion in oil palm areas? PAC Seminar, Malaysian Palm Oil Board.

Immense Opportunities Await...

- Palm Oil plays a critical role in helping to feed 3 billion people in more than 150 countries worldwide
- Feeding another 2 billion people by the year 2050 is <u>NO</u> small feat
- Palm Oil will remain relevant as it is now an Irreplaceable part of the Global Food Supply Chain
- Palm Oil is expected to account for 55% of the Global Edible Oil Consumption in the next 35 years!

(Source: Global Oils & Fats. June 2017)

Palm Oil Milling Initiatives

Overview on Milling Processes & Performance

Current Challenges & Research Prospect

Technological Development

Oils Processing

From Oil Palm Tree to Edible Palm Oil

19

Palm Oil Milling

20

Oil Extraction Rate (OER) = 20-22% Oil Losses = 1.40-1.60%

Research/Improvement Opportunities

Today's Mill Challenges

	Stagnant process	 Same process for the past 30-40 years Stagnant oil extraction and mill efficiency Increase of operational cost
	Additional New Requirement	 New parameter such as 3-MCPD and GE
*	High Energy Utilisation and Carbon Footprint	 Solid waste as fuel – tendency for low boiler efficiency Malaysian commitment for 40% Carbon Emission reduction by year 2020
K	Stricter Emission and Discharge Limit	 More stringent effluent and boiler emission standard More CAPEX and OPEX utilisation
2	Perception	 Consumer perception on non-hygienic means of oil palm fruits handling and processing during milling GMP, HACCP, HALAL Certifications, etc
• 4 .	Weather	 El Nino affected the production of palm oil in Malaysia, reduce productivity and increase cost of production
C C C	Labour Issue	Increase in wagesHuman error

Research/Improvement Opportunities

Economic	High Efficiency	Low Processing	High Value
	93% Oil	Cost	Products
	96% Kernel	RM20-25/FFB	CPO, Kernel
Environmental	Green Mill	Environmental	Zero Discharge
	Power 25-30kW	Friendly	Liquid waste
	POME 0.7-0.75/FFB	DOE compliance	Solid waste
Technology Advancement	Automation/ Mechanization Manpower, human error, hazard	Compact Mill Multiple unit operation Large footprint	Minimal Labour 70-80 pax/mill
Standard	High Safety Standard LTIFR	For	od Grade Factory

Example: High Efficiency Improvement

• OER is Oil Extraction Rate.

Oil Input = OER + Oil Losses

OFR = Weight of Oil Produced	and the second sec	W - VIII
Weight of FFB Processed		
	Target	
Oil loss in press fibre	0.60%	
Oil loss in final effluent	0.40%	
Oil loss in empty bunch	0.30%	
Oil loss in decanter cake	0.10%	
Total oil loss	<1.40%	

25

Separate Mesocarp Extraction

Screw Press-continuous process

MICRONES is an acronym for <u>Maceration Induced Cell Rupturing</u> <u>Oil Nut Extraction Synthesis</u>

Stage I - Maceration & Nut Separation

Stage II - Tricompression Screw Press

> Stage III-Hydration

Stage IV - Tricompression Screw Press

Sime Darby

Plantation

Inorganic Enhancer

No	Title	Author	Summary
1	Surfactant for Oil Recovery	G.P. Ahearn	Usage of surfactant as support for the current water injection system for oil recovery
2	Improved Oil Recovery by Surfactant and Polymer Flooding	L.A. Wilson. Jr	Usage of surfactant and type of water are influence by the type of oil, pH, temperature and fluid composition
3	Biosurfactant Production by Bacillus Subtilis B20 using Date Molasses and its possible application in enhanced oil recovery	S.N. Al Bahry	Biosurfactant can reduce the surface tension and allow for additional 9.7% oil recovery.
4	Treatment of Cutting Oi/Water Emulsion by Coupling Coagulation and DAF	K.Bensadok	Usage of sulphuric acid, ferric chloride and calcium chloride can destabilize the emulsion thus assist in turbidity removal and oil recovery
5	Coagulation of Residue Oil and Suspended Solid in POME by Chitosan, Alum and PAC	A.L. Ahmad	Usage of chitosan, Alum and PAC will assist in removal of oil together with suspended solid from POME. Therefore, it cannot be used to recover oil from POME

0.23

0.780

1.7003

1.2638

1 5971

0.187988

-0.603402 15 -0.5594

0.7649

1.5128

2.8200 3 8247

2 4002

2 5838

1.9931

Evaluation conducted in 4months period

□ Results illustrates a 95% confident internal for a mean difference of 1% increase for oil recovery rate

Summary Report for Delta ORR

Regression Analysis: %ORR versus Dosing, Day, Line

Sime

Example: Environmental Friendly

30

Department of Environment (DoE) has circulated new draft in 2015:

- More stringent on treated effluent discharge
- Proposed to be enforced by July, 2016 but deferred after hearing comments from industries.

HAD-HAD PARAMETER BAGI PEMBUANGAN KE DALAM PERAIRAN PEDALAMAN ATAU PERAIRAN WILAYAH

JADUAL KEEMPAT

[Peraturan 24, 25, 26]

Parameter	Had Mengikut Tempoh Pembuangan			
	Sedia ada sehingga	1 Julai 2016-31	1 Jan Julai 2020	
	30 Jun 2016	Dis 2019	dan seterusnya	
Oksigen Biokimia yang				
diperlukan (BOD3) 3-	100	50	20	
hari, 30ºC; mg/L				
Pepejal Terampai; mg/L	400	200	200	
Minyak dan Gris; mg/L	50	5	5	
Nitrogen Amonikal;	150	20	20	
mg/L				
pH	5.0-9.0	5.0-9.0	5.0-9.0	
Suhu; ºC	45	45	45	
Warna (ADMI unit)	-	100	100	

31

COPYRIGHT©2019 SIME DARBY RESEARCH SDN. BHD. ALL RIGHTS RESERVED.

Sime Darby

Effluent Treatment System

33

Example: High Value Products -Oil Quality Improvement

Palm Oil Washing with Bio-based Solution

- Improve the CPO quality (FFA, 3-MCPD)
- Highly Commended for Palm Oil Award, IChemE 2018
- Patent filing: WO2016167638A1 (PCT Filing) PI 2018702151 (Malaysia) P00 2017 03656 (Indonesia)

COPYRIGHT©2019 SIME DARBY RESEARCH SDN. BHD. ALL RIGHTS RESERVED.

Sime Darby

Plantation

Separate Loose Fruits Processing

- Improve the CPO quality
- Reduce Steam Consumption
- Reduce Oil Loss in EFB
- Patent filing: PI 2018000689 (Malaysia)

Example: Technology Advancement Improvement

Experimental Plant

- 200+ sensors
- Pilot to commercial trial
- Mill optimization

Station

THANK YOU

mervin.chew.chienlye@simedarbyplantation.com

Appendix

The Truth

Source: FAO, Oil World 17/18

Datuk Dr Kalyana Sundram

Green cover for 97% of the total oil palm areas

The oil palm industry is a net carbon sink

Oil Palm plantations are capable of removing as much CO2 as tropical forests

Source: MPOC, The New Straits Times, MPOB, Oil World 17/18, Palm Oil Action Group Australia, The Guardian 2014

Global Demand Scenarios and Impact on Malaysian Palm Oil

Figure 1 :	🍐 Soyabean Oil	24.47%
World Oils & Fats Production 2017	💧 Rapeseed Oil	11.50%
219.97	🍐 Sunflower Oil	8.67%
million tonnes	🍐 Coconut Oil	1.11%
	Animal Fats	8.65%
	Others	<mark>11.84</mark> %
	💧 Palm Oil	30.50%
	🍐 Palm Kernel ()i l 3.25%

Source: Oil World & MPOC estimates

41

Sime Darby

Search

Q DONATE

DONATE ADOPT

WORLD WILDLIFE MAGAZINE SUMMER 2018

WHAT ARE THE BIGGEST DRIVERS OF TROPICAL DEFORESTATION?

THEY MAY NOT BE WHAT YOU THINK

THE FOOD BEHIND DEFORESTATION

Beef and soy production are driving **more than two-thirds of the recorded habitat loss** in Brazil's Amazon and Cerrado regions and Argentina and Paraguay's Gran Chaco region. Demand for soy is closely connected to demand for beef and other animal proteins. Between 70% and 75% of all soy becomes livestock feed—for chickens, pigs, and farmed fish, as well as for cows.

No.1

Beef production is the top driver of deforestation in the world's tropical forests. The forest conversion it generates more than doubles that generated by the production of soy, palm oil, and wood products (the second, third, and fourth biggest drivers) combined. Beef also drives conversion of non-forest landscapes, from grasslands to savannas.

No.2

The second biggest driver of tropical deforestation is soybean production. Global soybean production has increased more than fifteenfold since the 1950s. Between 1990 and 2010 in South America, the land used for soy production swelled from 42 million acres (roughly the size of Washington State) to 114 million acres (bigger than the state of California).

Behind beef, soy is the second largest agricultural driver of deforestation worldwide.

Source: WWF 2018

The company initiative

http://www.simedarbyplantation.com/sustainability/our-sustainability-journey

Innovation Sustainability

Our People

NEW PLANTING

Our New Planting Policy takes into account not only local laws and the Principles and Criteria of the Roundtable of Sustainable Palm Oil (RSPO), but also the traditions and practices of the local communities living in the areas of our operations.

Social & Environmental Impact Assessments (SEIA)

Sime Darby Plantation undertakes Social & Environmental Impact Assessments (SEIA) as a standard operating procedure before any development begins. The company does not plant on High Conservation Value (HCV) ground.

As a founding members of RSPO, Sime Darby Plantation respects and fulfils the principles and criteria set. The company has strict policies against the clearing of HCV forests and virgin jungles, graveyards, identified buffer and riparian zones. All of these commitments have been discussed at the RSPO's RT5-7 summits and have been endorsed by the Board of Directors of Sime Darby Berhad, the parent of Sime Darby Plantation.

Sime Darby Plantation's commitment towards sustainable plantation practices includes maintaining High Conservation Value (HCV) areas in its estates. The following areas will be considered to be maintained as HCV:

natural forests within the estates.

- Wetland areas
- River boundaries
- Water catchments and effluent pond areas
- Marginal soil areas
- Areas with slopes of more than 20 degrees gradient
- Land belonging to local indigenous peoples

As per RSPO's requirement, we shall only use HCV assessors accredited by the HCVRN Assessor Licensing Scheme (ALS) in conducting assessments.

CROSSCHECK

'Crosscheck' is Sime Darby Plantation's major step forward in our journey to creating a deforestation-free supply chain. It is an open source online tool that is available to everyone.

We believe the frontier to halting deforestation is traceability. 'Crosscheck' allows us to trace to supply back to its source, making it possible to identify where problems exist - and take action.

http://www.simedarbyplantation.com/sustainability/crosscheck

Sime Darby Plantation : Roadmap to No Deforestation

Our Approach and Progress to No Deforestation in our Supply Chain

Guiding Principles: New York Declaration on Forests

Sime Darby

Full replant

1000

