

8th Regional Process Safety Seminar

The Future of Process Safety
19-20 March, InterContinental Hotel KL
Register now!

www.icheme.org/rpss

Hazards Asia Pacific 2019

Culture, Technology and Responsibility **24-25** September, Kuala Lumpur

Call for Papers Open! submit an abstract today

www.hazardsap.org

Performance Analysis of Dividing Wall Distillation Column for Efficient Fractionation of Oleochemical Fatty Acid: Model Based Approach

Dr.-Ing. Mohamad Rizza Othman
IChemE POPSIG Seminar | 11th February 2019
Monash University

Presentation Layout

1: Universiti Malaysia Pahang An overview 2: Introduction DWDC Oleochemical Industry Presentation scopes 3:Research Methodology Case study Model development •Econ. & Env. assessment Hydraulic model Dynamic model 4: Results & Discussions Model results •Econ. & Env. Assessment Hydrodynamics Dynamic analysis 5: Concluding Remarks Summary •Future works

UNIVERSITI MALAYSIA PAHANG

Corporate Video

UNIVERSITI MALAYSIA PAHANG

Faculty of Chemical & Natural Resources Engineering

Program offered:-	Research clusters
Diploma in Chemical Engineering (Process Plant)	□ ProSES □ Reaction
☐ Bachelor of Chemical Engineering	Advanced MaterialEnvironmentBBEC
Master in Chemical Engineering with Entrepreneurship	SeparationHeat and Mass Transfer
Master in Mining and Mineral Technology	Journal of Chemical Engineering and Industrial Biotechnology (JCEIB)
Master in Process Plant Operation	
Master by ResearchDoctor of Philosophy (PhD)	

- ☐ Distillation column are estimated to consume 40% of the total energy to operate plant.
- ☐ Researchers are motivated to develop and improve the efficiency of distillation processes through process:-
 - Intensification
 - Heat integration
 - Optimization
 - Etc.

- ☐ Areas of process intensification:-
 - 1. Equipment special designs that optimize critical parameters (e.g., heat transfer, mass transfer)
 - 2. Methods integration of multiple processing steps into a single unit operation i.e. Reactive distillation, Petyluk column & Dividing wall distillation column (DWDC).

Dividing Wall Distillation Column (DWDC)

- ☐ DWDC is intensified form of Petyluk column.
- ☐ Vertical wall in the middle part of the main distillation column.
- ☐ Split reflux and vapour flow to both sides of the wall.
- ☐ Prevent lateral mixing with fresh incoming feed.

Dividing Wall Distillation Column (DWDC)

- ☐ DWDC has been used for the past 18 years.
- Advantage for separating multicomponent mixtures with reduced cost and energy consumption.
- DWDCs are expected to become the standard in the chemical industry in the next decades because of promising cost and energy savings.

Oleochemical Industry

- Malaysia is one of the key players in the oleochemical industry.
- Most oleochemical plant fractionation process used DC.
- Offer huge opportunity for DWDC application.

Number of Oleochemical Plants & Capacities: 2013 (tonne/year)

State	In Operation		Not In Operation		Under Planning		Total	
	No	Capacity	No	Capacity	No	Capacity	No	Capacity
Johore	6	608,900	0	0	0	0	6	608,900
Penang	3	791,325	0	0	0	0	3	791,325
Selangor	6	817,746	0	0	0	0	6	817,746
Other States	1	365,000	1	16,000	1	60,000	3	441,000
Malaysia	16	2,582,971	1	16,000	1	60,000	18	2,658,971

r)		
r Planning		Total
Capacity	No	Capacity
0	6	608,900
0	3	791,325
0	6	817,746

Type of	No. of production plant						
Type of separation unit	Fatty acid	Fatty alcohol	Methyl ester				
DC	9	3	3				
DWDC	0	0	0				

Malaysia's oleochemical exports

Source: MIDA/MPOB. 2014

Presentation Scopes

- Case study: Oleochemical Fatty Acid Fractionation
- Model Development
- Econ. & Env. Assessment
- Hydraulic Model
- Dynamic Model

RESEARCH METHODOLOGY

Case Study

Oleochemical Fatty Acid (FAc) Fractionation

- ☐ FAc cuts; 99 wt% C6-C10 (PC), 99 wt% C12 (LC), 99 wt% C14 (MC), >99 wt % C16-C18 (HC)
- Data obtained from our industrial partner.
- ☐ Columns operated under vacuum 10 40 mbar.
- ☐ Columns temperature <270 C to avoid product degradation.

Component	Cuts	MW	T _{BP} , °C	Dipole moment, debye
(C6) Caproic acid, C ₆ H ₁₂ O ₂		116.16	205.7	1.57092
(C8) Caprylic acid, C ₈ H ₁₆ O ₂	Precut (PC)	144.21	239.7	1.69983
(C10) Capric acid, $C_{10}H_{20}O_2$		172.27	270.0	1.67884
(C12) Lauric acid, C ₁₂ H ₂₄ O ₂	Light cut (LC)	200.32	298.7	1.63987
(C14) Myristic acid, $C_{14}H_{28}O_2$	Middle cut (MC)	228.38	326.2	1.67884
(C16) Palmitic acid, C ₁₆ H ₃₂ O ₂		256.43	350.0	1.7388
(C18:1) Oleic acid, C ₁₈ H ₃₄ O ₂	Hanning out (HC)	280.45	354.9	1.21716
(C18:2) Linoleic acid, $C_{18}H_{32}O_2$	Heavy cut (HC)	282.47	359.9	1.43901
(C18) Stearic acid, C ₁₈ H ₃₆ O ₂		284.483	374.0	1.66985

Thermodynamic Model

Thermodynamic Model

- Activity coefficient models i.e. NRTL, UNIQUAC, UNIFAC etc.
- In this work NRTL & UNIQUAC were compared with NIST data for C12 (Lauric acid) / C14 (Myristic acid) system.

DWDC Design

- A: Rectifying section
- B: Pre-fractionation section
- C: Middle section
- **D**: Stripping section

DWDC Flowsheet

- □ 1 DWDC = 4 RADFRAC blocks (represent 4 internal sections) + 1 condenser + 1 reboiler + 1 liquid split + 1 vapor split
- Create complex interactions thus increased column complexity and computational effort.
- DOF is reduced to 2 (Section A & D).
- Model converge is low and require a lot of parameter tweaking and tuning.

Econ. & Environ. Assessment

- \Box 1 DWDC = 4 towers.
- \square DC = 4 towers + 4 reboilers + 4 condensors
- ☐ DWDC = (4 towers) x 2 + 2 reboilers + 2 condensors
- BEM type shell and tube exchangers for condensors.
- ☐ Kettle type for reboiler
- MOC is stainless steel
- ☐ Capital cost = Tower + Packing + Reboiler + Condensor
- Operating cost = Cooling water + HP steam
- ☐ Environmental analysis using Carbon Tracking tools in Aspen Plus.
 - ☐ CO2 emission factor data source is US-EPA-Rule-E9-5711
 - ☐ Fuel source is natural gas.

Hydraulic Model

Transfer block

- Important for design purposes and prevent operational and control problems.
- Give insights on the effect pressure drops, flood points, vapour and liquid flows.
- DWDC model extension:-
 - Packing rating option with updated pressure drop profile using built-in vendor correlations.
 - ☐ Transfer block to prevent negative pressure & pressure consistency for different run.
- ☐ Effect of packing type to cost:-
 - ☐ HETP: 0.1 m 0.7 m.
 - Packing type: 125Y & 250Y
 - Cost were calculated using:-

$$C_{packing} = \left[\left(\frac{A_{packing}}{2} \right) \cdot T_{packing} \cdot \rho_{moc} \cdot C_{moc} \right] V_{vessel}$$

$$TPC^n = C^n_{packing} \cdot V^n$$

$$TPC_{DWC} = \sum_{n} TPC^{n}$$

Dynamic Model

- ☐ Relative gain array (RGA) and singular value analysis (SVA) to determine the best 3X3 control configuration.
- ☐ RGA and SVA analysis were performed in Aspen Plus.
- ☐ Model extension to Aspen Dynamics (Pressure driven)
 - ☐ Extended flowsheet to include additional block i.e. valve, pumps, compressors
 - ☐ Additional dynamic input specifications i.e. reflux drum, sump
 - Packing rating
 - ☐ Pressure check to ensure pressure consistency

- Control tuning based on ZN PID controllers.
- Performance analysis:-
 - ☐ Disturbances rejection: ±5% in feed flowrate
 - Set point tracking: ±5% variation in product purity

- Modelling Results
- Econ. & Env. Assessment
- Hydraulic Performance
- Dynamic Analysis

RESULTS & DISCUSSIONS

Txy diagram for C12/C14 between NIST data and UNIQUAC predictions (left plot), and between NIST data and NRTL predictions (right plot). The dotted line is the polynomial curve for the NIST data. **NRTL was chosen as the thermodynamic model.**

Overall Flowsheet

Results Summary

		D	С		DW	/DC
	PC	LC	MC	НС	DWC 1	DWC 2
Reflux ratio	3.45	1.48	2.16	0.1	12.7	4.5
					10 (A)	11 (A)
Stages	29	27	24	9	11 (B)	11 (B)
Stages	29	27	24	9	11 (C)	11 (C)
					18 (D)	6 (D)
Feed stage	10	7	9	5	5 (at B)	5 (at B)
Pressure [mbar]	40	40	15	10	40	15
Reboiler duty [kW]	556.4	1186.5	402	252.6	1332.2	746.7
Condenser duty [kW]	354.39	1147.6	461.9	235.2	1091.4	804.8
Distillate temp. [°C]	153.5	197.1	194.9	211.9	153.5	194.8
Bottom temp. [°C]	207.7	232.6	221.6	227.3	232.6	238.1
					1.72 (A)	1.88 (A)
Diameter [m]	1 44	2.15	1.63	1 22	1.38 (B)	1.36 (B)
Diameter [m]	1.44	2.15		1.33	1.34 (C)	1.34 (C)
					2.00 (D)	1.91 (D)

Temperature & Composition Profile

Econ. & Environ. Assessment

-	DC	DWDC	Difference (k\$)	Difference (%)
Total bare module cost				
- Column towers [k\$]	649.7	731.2	-81.5	-12.5
- Condensers [k\$]	341.6	284.2	57.4	16.8
- Reboilers [k\$]	1,312	1,216	96.0	7.3
- Total [k\$]	2,303.3	2,231.4	71.9	3.1
Operating cost				
- Cooling [k\$/yr]	14.8	12.7	2.1	16.9
- Heating [k\$/yr]	257.6	233.9	23.7	10.2
- Total [k\$]	272.5	246.6	25.9	10.5
Environmental analysis				
- Total CO2 emission [kg/hr]	773.04	701.7	-	10.2

Hydraulic Performance

Operating cost for Mellapak 125Y

Operating cost for Mellapak 250Y

Packing type	HETP of DWC1						HETE	of D	WC2	
	0.1	0.2	0.3	0.5	0.7	0.1	0.2	0.3	0.5	0.7
125Y	А	Α	Α	Α	Α	Α	Α	Α	В	В
250Y	А	Α	Α	Α	В	Α	В	В	С	С

Effect of packing type and HETP to column reboiler convergence. "A" indicate that the column reboiler fully converged. "B" indicate warning in which the minimum temperature approach of 5 °C were violated. "C" indicate error in which the reboiler temperature cross with the utility temperature.

SVA results **RGA** results

Controlled variables	Manipulated variables							
	L	S	V					
x _{C10}	-3.3070	4.3080	-0.0010					
X _{C12}	4.2978	-3.4826	0.1848					
X _{C14}	0.0092	0.1746	0.8162					
	L	В						
x _{C10}	-3.0273	4.0208	0.0065					
X _{C12}	0.6892	-0.4059	0.7166					
X _{C14}	3.3381	-2.6149	0.2768					
	D	S	V					
x _{C10}	0.9916	-0.0949	0.1033					
X _{C12}	-0.1153	1.1151	0.0002					
X _{C14}	0.1237	-0.0202	0.8965					
	D	S	В					
X _{C10}	-13.2389	-3.4140	17.6529					
X _{C12}	0.7780	-0.2493	0.4713					
X _{C14}	13.4609	4.6632	-17.1242					

Pairing	Controlled variables	Manipulated variables ^a	CN
1	x _{C10} ,x _{C12} ,x _{C14}	LDS	2765.00
2	x _{C10} ,x _{C12} ,x _{C14}	LSV	147.84
3	x _{C10} ,x _{C12} ,x _{C14}	LSB	222.00
4	x _{C10} ,x _{C12} ,x _{C14}	LDV	139.46
5	x _{C10} ,x _{C12} ,x _{C14}	LDB	18.81
6	x _{C10} ,x _{C12} ,x _{C14}	LVB	1004.33
7	X _{C10} ,X _{C12} ,X _{C14}	DSV	3.83
8	x _{C10} ,x _{C12} ,x _{C14}	DSB	33.03
9	x _{C10} ,x _{C12} ,x _{C14}	DVB	4.22

Dynamic response of $\pm 5\%$ variations in feed flowrate

Dynamic response of $\pm 5\%$ in set point

Concluding Remarks

☐ A DWDC model was successfully developed in Aspen Plus. ☐ Economic and environmental assessment shows that DWDC saves >3% total capital cost, >10% total operating cost and reduce >10% carbon emission ☐ Pressure and hydraulic analysis were successfully implemented. ☐ Dynamic model were successfully modelled in Aspen Dynamic. ☐ DSV control configuration was selected and perform well for disturbance and set point change.

Concluding Remarks

- ☐ Current & Future works:-
 - Heat integrated DWDC (Norul Malakiah, PhD)
 - Pilot plant controllability and operability study (Ongoing)
 - Reactive/Extractive DWDC (Latest interest)
 - Advanced process control
 - Offline and online optimization
 - Process fault detection and diagnosis

THANK YOU

Monash Industry Palm oil Plaiform

Acknowledgement

- Universiti Malaysia Pahang
- POPSIG IChemE
- Monash University Malaysia
- Financial support from the Malaysia Ministry of Higher Education through ERGS (RDU130601) and FRGS (RDU140105) grant