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When any exothermic reaction proceeds in an unstirred vessel, natural convection may develop. The presence 
of this flow may alter the balance between heat generation and heat removal in the vessel, which ultimately 

governs whether the system will explode. Classical theories of thermal explosion have largely neglected the 

potentially important role that buoyant convection can play. More recently, numerical investigations of the 
effects of natural convection on thermal explosion have considered reactors where the temperature of the wall 

of the vessel is held constant. Thus, there is a physically unrealistic, infinitely fast heat transfer between the 

wall and the surrounding environment. In reality, there will be heat transfer resistances associated with 
conduction through the wall of the vessel and due to convective transfer from the surface arising from the local 

environmental conditions. These additional modes of heat transfer have the potential to fundamentally alter the 

rate of heat transfer from the hot zone in the vessel, to the cooler environment. This work presents a numerical 
study of thermal explosion in a spherical reactor under the influence of natural convection and external heat 

transfer, which neglects the effects of consumption of reactant. Simulations were performed to examine the 

changing behaviour of the system as the intensity of convection, as characterised by the Rayleigh number, and 
the importance of external heat transfer, as characterised by the Biot number, were varied. It was shown that the 

temporal development of the maximum temperature in the vessel was qualitatively similar as the Rayleigh and 

Biot numbers were varied. It has been shown that the maximum dimensionless temperature achieved in a non-
explosive reaction on the explosion boundary increases from 1 in the well mixed limit to its constant wall 

temperature value asymptotically. For Bi < ~ 10, the maximum temperature varies little with Rayleigh number, 

but interestingly is lower for higher values of Ra. This is in contrast to what is observed at higher Bi where 
more intense natural convection means that higher temperatures can be sustained in non-explosive cases.  

Importantly, this variation in maximum temperature achieved in stable systems means that explosion criteria 

based on the maximum temperature achieved in the reactor may be inappropriate for systems with significant 
external heat transfer. Additionally, regions of parameter space where explosions occurred were identified. It 

was shown that reducing the Biot number increases the likelihood of explosion and reduces the stabilising 

effect of natural convection. The effects of varying important process parameters, such as the size of the vessel 
and the initial temperature and pressure of the gas on the tendency to explode are also shown. Finally, the 

results of the simulations were shown to compare favourably with analytical predictions in the classical limits 

of Semenov and Frank-Kamenetskii. 

Introduction 

When any exothermic reaction occurs in a closed vessel then there is a risk of thermal explosion. Such explosions occur 

when the rate of heat production by the reaction exceeds the rate of heat removal through the vessel’s walls.  The pioneering 

works on thermal explosion by Semenov (1928) and Frank-Kamenetskii (1969) considered two extreme cases. Semenov 

investigated cases where the mixing within the vessel was so efficient that its contents could be considered to be spatially 

uniform. In contrast, Frank-Kamenetskii considered a case without mixing. In such a scenario, spatial temperature gradients 

develop. Frank-Kamenetskii realised that these gradients would significantly impact the heat removal from the system, and 

hence the tendency to explode. In particular, he considered cases where heat transfer occurred by conduction only.  

If the temperature gradients become sufficiently large, the resulting buoyancy forces will cause the gas to move. This natural 

convection can have a significant influence on the progress of the reaction. The nature of the induced flow is determined by 

the Rayleigh number, Ra = ( g L3 T) / ( ). Frank-Kamenetskii (1969) suggested that in a gaseous system, natural 

convection becomes significant when Ra > 104; however, further studies (Tyler, 1966) have shown that natural convection 

becomes important when Ra exceeds ~ 500. 

The initial experimental evidence for a greater influence of natural convection than was allowed for by Frank-Kamenetskii in 

his model inspired a number of experimental and numerical investigations of exothermic reactions with natural convection. 

The experimental work of Merzhanov and Shtessel (1971) on liquid systems in a horizontal cylinder showed that natural 

convection is significant at Rayleigh numbers well below 104. Jones (1973) noted that inside a horizontal cylinder or a 

sphere, there is always some convection, because of the existence of temperature gradients perpendicular to the gravity 

vector; the ‘onset’ of convection is in fact merely the point where the effects of this flow become observable. In a seminal 

work on the interaction of thermal explosion and natural convection, Merzhanov and Shtessel (1973) presented a detailed 

numerical and experimental analysis of explosion in a liquid system. They showed that natural convection suppresses 

explosion, and that when explosion does occur, the ignition delay is longer in the presence of natural convection. 

In all of these numerical studies, the effect of Ra on thermal explosion was quantified by calculating a new critical value of 

the Frank-Kamenetskii number, . More recently, a new approach was proposed by Liu et al. (2008),who presented an 

analysis in which the explosive limits were described in terms of a series of ratios of characteristic timescales for the 

important physical processes that are at work, namely natural convection, diffusion (of both heat and mass) and heating due 

to the chemical reaction. This approach is very attractive, as it describes the transition to explosion in terms of simple 

groups, which have clear physical meaning. Significantly, Liu et al. (2010) also revisited the issue of defining when an 

explosion can be deemed to have occurred in a system with significant depletion of reactant. This transition to explosion is 

obvious in systems with minimal reactant consumption, where in an explosive case the temperature will increase without 

bound; however, when the reactant is depleted, this will significantly reduce the production of heat by the reaction. 

Consequently, a plot of the temporal development of the maximum temperature in the vessel will display a clear maximum. 
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Liu et al. (2010) proposed a simple criterion to determine whether an explosion has occurred based solely on the maximum 

dimensionless temperature achieved. When this exceeds 5, an explosion is said to have occurred.  

Many other numerical studies have considered the effect of natural convection on explosion in so-called class A geometries 

(i.e. parallel plates, infinite cylinders and spheres). These studies, however, all consider cases in which the fixed boundaries 

of the reactor are held at a constant temperature. This constant temperature at the wall implies there is an infinite heat 

transfer coefficient between the reactor and its surroundings. In reality, this is unlikely to be the case. There will, of course, 

be a heat transfer resistance associated with conduction through the solid wall of the reactor, and a finite resistance between 

the wall and the environment. It is obvious that these additional heat transfer mechanisms may significantly alter the rate of 

heat removal from the reactor, and hence the tendency of the fluid to explode. Despite this important fact, very few studies 

have included the effect of external heat transfer in their analyses. Frank-Kamenetskii (1969) did derive an approximate 

expression for the dependence of  in a purely diffusive system on external heat transfer, via what he called a Nusselt 

number, but what is in reality a Biot number. He found that the inclusion of a finite rate of external heat transfer made an 

explosion more likely. Boddington et al. (1984) performed an elegant asymptotic analysis of a purely diffusive system in 

which consumption of reactant is important. They showed that external heat transfer, again characterised by a Biot number, 

had a more significant effect in a spherical system, when compared with the other class A geometries. 

This work aims to perform an initial investigation into the transition from a slow reaction to explosion in a spherical reactor 

in which natural convection is significant, but in which depletion of the reactant can be ignored. The governing equations are 

presented in section 2. The results of numerical simulations are discussed in section 4. In addition, the results are compared 

with the analytical results of Semenov and Frank-Kamenetskii. 

Theoretical Background 

Dimensional Equations 

The reaction occurring in a spherical reactor is considered to be an nth order exothermic, thermal decomposition reaction, in 

which the concentration of the reactant is assumed to remain constant at its initial value, c0. The governing equations express 

the conservation of the reactant, energy, momentum and mass. The Boussinesq approximation, in which density changes are 

ignored in all terms except the body forces (which drive natural convection) in the Navier-Stokes equations, is applied to 

considerably simplify the equations. This approach has been used extensively in the study of thermal explosion. 

The conservation of energy within the reactor is described by: 
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where CP is the mixture’s specific heat at constant pressure, T is its temperature,  is the thermal diffusivity, 0 is the density 

at the initial temperature T0 and q is the exothermicity of the reaction. The rate constant k is assumed to have Arrhenius 

temperature dependence, i.e. it has the form k = Z exp(– E/ R T), where Z is the pre-exponential factor and E is the activation 

energy. The familiar Navier-Stokes equations: 
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describe conservation of momentum, where P is the pressure in the reactor and  is the kinematic viscosity. Per the 

Boussinesq approximation, the density only varies in the buoyancy term of Eq. (2), in which  = 0[1 –  (T – T0)], where  

is the coefficient of thermal expansion.  

The final equation required is the continuity equation. Adoption of the Boussinesq approximation allows the continuity 

equation to be written in its incompressible form, i.e. 

0.  u . (3) 

The gas is assumed to be initially motionless and at a uniform temperature T0; this is the temperature of the surrounding 

environment, which remains fixed throughout the course of the reaction. The external resistance to heat transfer is modelled 

via a heat transfer coefficient, h. It is assumed that the no-slip condition applies at the wall and that there is no flux of any 

species at the wall. The effects of any heterogeneous reactions at the wall have hence been ignored. The initial and boundary 

conditions can thus be stated: 

x   u  ;T   T:t  00 0  

   00: wallAt the TThTk. n  ;u T   , (4) 

where n is a unit vector perpendicular to the wall of the vessel and kT is the thermal conductivity of the gas.  
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Dimensionless Equations 

Following the method proposed by Liu et al. (2008) the governing equations (1) – (4) can be made dimensionless by the 

introduction of the following dimensionless variables: 
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where ERTT 2

0  is a characteristic scale for the rise in temperature due to the reaction,   21
TgLU    is a 

characteristic velocity when natural convection dominates transport and L is the characteristic length scale for the reactor, 

taken to be the radius in the present work. Additionally, the following characteristic timescales can be defined: 
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for diffusion, natural convection and heating due to the reaction, respectively. Here, k0 is the rate constant evaluated at the 

initial temperature T0. Equations (5) and (6) allow the governing equations (1) – (4) to be written as dimensionless form as: 
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where Le =  / DC is the Lewis number,  2

000 RTCEqcT Pad  , ERT0 , Pr =  /  is the Prandtl number and Bi = h 

L / kT is the Biot number. The limiting cases of constant wall temperature and perfect mixing are represented by Bi = ∞ and 

Bi = 0, respectively. The governing dimensionless equations (7) – (9) are the same as those presented previsouly (Liu et al., 

2008), whilst the boundary conditions in equation (10) differ. 

The behaviour of this system can therefore be characterised by the following five dimensionless groups: 
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and for a given chemical system, where  and Pr are fixed, then the behaviour of the system is governed by the ratios 

DH  and CH  , as well as Bi. For a system with a constant wall temperature, the behaviour is only a function of the 

ratios of timescales as Bi would be infinite. Thus the behaviour of the system can be characterised by a three dimensional 

regime diagram. 

Numerical Method 

The governing equations (1) – (4) were solved using COMSOL Multiphysics® 4.3a (COMSOL, 2012), which utilises the 

finite element method. The solution was assumed to be axisymmetric about the vertical axis of the spherical vessel. 

Accordingly, the equations were solved on a semi-circular, 2-dimensional mesh consisting of approximately 3000 linear 

triangular elements. For the numerical simulations the thermal decomposition of azomethane was considered. The order of 

this reaction has been found experimentally as n = 1.4. The physico-chemical properties employed were: Cp = 2250 J kg-1 K-

1, Z = 1.24 × 1014 mol-0.4 m1.2 s-1, E / R = 23280 K (so E = 193.6 kJ mol-1). The exothermicity of the reaction was assumed to 

be q = 124 kJ mol-1. In accordance with previous studies, the radius of the reactor was taken to be L = 0.064 m, 

corresponding to a reactor with a volume of 1100 dm3. The temperature of the environment was taken as T0 = 636.2 K, 

which matches the wall temperature used in previous studies. The concentration of azomethane in the reactor was assumed 

to remain constant, as discussed above, with c0 = 0.37 mol m-3. The ratios DH  and CH  were varied by changing the 

value of  and g, respectively. The external heat transfer coefficient h was then varied to give the desired Bi. Simulations 

were performed for Ra < 106, i.e. cases where the natural convection was laminar. The system was further simplified by 

assuming that Pr = 1, i.e. the diffusivities of heat and momentum were assumed to be equal. This is approximately true for 

gasses but not for liquids. 
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Results and Discussion 

Temporal and Spatial Development of the Temperature and Speed 

The inclusion of an external heat transfer resistance alters the heat removal from the system. Additionally, the temperature of 

the wall is no longer constant throughout the duration of the reaction. Both of these factors may alter the way the reaction 

proceeds, and hence the spatial structures within the reactor. To investigate this difference, simulations were run to examine 

the difference between stable and explosive reactions at three different values of Bi. The values considered are Bi = 10 

(where external heat transfer is significant, but internal resistances still dominate overall), Bi = 1 (where internal and external 

thermal resistances are similar in magnitude) and Bi = 0.1 (where external heat transfer is the dominant mechanism). 

Additionally, three intensities of natural convection, as characterised by Ra were considered: Ra = 103, where natural 

convection is becoming important, Ra = 104, where laminar convection is dominant and Ra = 105, where the system is 

approaching the transition to turbulence. Plotted in Fig. 1 are the temporal developments of the maximum dimensionless 

temperatures in the reactor for four cases at the extremes of the range of Bi and Ra considered.  

 

Figure 1. The temporal evolution of the maximum dimensionless temperature in the reactor for Bi = 10 and 0.1, when  Ra = 

103 and 105. These cases fall either side, but close to, the explosion boundary. The stable reactions are plotted as solid lines, 

whilst the explosive cases are dashed lines. The plots are ordered such that Bi is constant along a row and Ra is constant 

along a column. 

For Bi  = 10, it is clear that the temporal development of the stable cases is remarkably similar. In each case, the temperature 

rises at a relatively constant rate initially, before the rate of increase slows as the natural convection develops and enhances 

heat removal. When convection becomes fully established, the maximum temperature reaches its steady value. Interestingly, 

in both cases the maximum value at steady state is T´ ~ 1.5. The explosive cases show a similar rise in temperature to the 

non-explosive cases initially. Unsurprisingly, after this initial period, the maximum temperature in the vessel is higher than 

is the case for the stable reactions. In all three cases there is clearly a decrease in the slope of the temperature versus time 

curve (i.e. 0'' 22  tT ) before an upward inflection in the curve, after which the temperature increases without bound. 

Such a shape of curve is, of course, characteristic of an explosive system in which reactant consumption is ignored. If 

consumption of reactant was important, then the increase in temperature would remain bounded, due to the limited heat 

production by the reaction of a finite mass. In each case, the inflection in temperature can be seen to occur when T´ is in the 

range 1.5 – 2. It has been noted previously (Liu et al., 2008), that this upward inflection in temperature, which is often used 

to define whether or not an explosion has occurred, can be seen in non-explosive cases when natural convection is important. 

In particular, it is characteristic of cases where significant reaction occurs before natural convection has been established, 

and once the flow is significant, the heat removal at the wall increases and thus stabilises the reaction. It is also interesting to 

note that the dimensionless time to explosion increases with increasing Ra. The times for onset of convection and explosion 

have not been considered further here. 

Similar trends are evident when comparing the stable and explosive cases for reduced values of Bi. When Bi = 0.1, i.e. when 

the heat transfer is largely controlled by the external resistance, the temperature at which the upward inflection is seen is 

lower than in those cases with higher Bi and the maximum temperature of the stable systems is lower T´ ~ 1. Therefore, 
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comparison of all four explosive cases and all four stable cases reveals that the evolution of the maximum temperature in the 

vessel is qualitatively similar across the range of Bi and Ra considered. The most obvious quantitative difference is that the 

temperatures seen, both at the point where the explosive reaction accelerates to infinity and in the maximum temperature of 

the stable system, are smaller as Bi is increased, but remarkably similar as Ra is varied at fixed Bi. 

It is clear from Fig. 1 that temporal development of the maximum temperature in the vessel is affected very little by either Bi 

or Ra, with the primary quantitative difference being in the magnitude of the temperatures observed. It is, however, to be 

expected that the spatial development of the temperature, and hence velocity fields will be more significantly altered by the 

existence of external heat transfer. Plotted in Fig. 2 are the spatial variations of the temperature and speed of the flow as 

explosive reactions proceed. Specifically, explosive cases for Bi = 10, 1 and 0.1 with Ra = 103 and 105 are considered. 

 

Figure 2. The temporal development of the spatial dimensionless temperature (left semi-circle) and speed (right semi-circle) 

profiles in the reactor for explosive cases very close to the explosive limit when (a) Bi = 10, Ra = 103, (b) Bi = 10, Ra = 105, 

(c) Bi = 1, Ra = 103, (d) Bi = 1, Ra = 105, (e) Bi = 0.1, Ra = 103 and (f) (Bi = 0.1, Ra = 105. The times are given in 

dimensional units for ease of comparison and indicative colour scales are given on the right. 

In Fig. 2(a) it is clear that the system heats up due to the reaction and a hot zone begins to form above the centre of the 

reactor at t = 2 s. In this case there is weak natural convection and this is what displaces the hot zone towards the top of the 

reactor. As the gas heats up, its density decreases and the higher temperature, lower density gas near the centre of the reactor 

experiences buoyancy forces which cause it to move vertically upwards. This high speed zone at the centre of the reactor is 

evident for t > 2 s. As the hot gas moves vertically upwards it contacts the cold wall and hence begins to descend, cooling 

further as it goes. This moderately high speed gas descending near the wall is also evident in Fig. 2(a). In the bottom half of 

the reactor, the density gradients are intrinsically stable and so the buoyancy forces are small, as are the velocities. There is 

also a large region of relatively cold gas, in fact close to the initial temperature, near the bottom of the reactor. As the 

reaction proceeds, the hot spot in the reactor shifts further up the vertical axis and eventually the explosion initiates in this 

hot region. Interestingly, there is evidence for all times shown in Fig. 2(a) of a thin thermal boundary layer at the top of the 

vessel which remains close to the initial temperature. This is despite the fact that the wall temperature is no longer held 

constant due to the existence of external heat transfer.  

Shown in Fig. 2(b) is an explosive case where Bi = 10 and Ra = 105. It can be seen that the temperature in the vessel 

increases relatively uniformly over the first second of reaction, and thereafter a hot zone forms close to the top of the vessel. 

This hot zone can be seen to develop for t > 2 s. As the convection is much more intense than that shown in Fig. 2(a), the hot 

zone is much closer to the top of the reactor. Additionally, the familiar horizontal stratification of the temperature, which is 

characteristic of cases when natural convection is significant, is evident. Due to the more intense convection and the 

proximity of the hot zone to the top of the reactor, the thermal boundary layer at a temperature close to the initial 

temperature, as seen in Fig. 2(a) for all times, persists only for the first 3 s of reaction. After that, it is evident that the intense 

natural convection, coupled to the removal of heat externally leads to the wall of the vessel heating up. The speed profiles 

show that as the vessel warms uniformly at the beginning of the reaction, there is significant upflow around the centreline of 

the reactor, and the warm gas descending along the cold walls moves very rapidly. Indeed, Fig. 2(b) shows that the flow in 

the thin layer close to the wall is very fast compared to the central up flow for t > 2 s. Interestingly, these temperature and 

velocity fields are structurally very similar to those presented previously (Liu et al., 2008) for explosive cases with a 

constant wall temperature. This is perhaps unsurprising given that when Bi = 10, the internal heat transfer will still largely 

control the overall heat transfer. As mentioned above, the principal difference between Figs. 2(a) and (b) and their constant 

wall temperature counterparts is the erosion of the thermal boundary layer near the top of the vessel, due to the variation in 

the wall temperature that accompanies the external heat loss. 

If the heat transfer coefficient describing heat loss from the external wall is decreased, then Bi will also decrease. Shown in 

Fig. 2(c) is the case where Bi = 1 and Ra = 103 i.e. the internal and external heat transfer resistances are of similar order and 

natural convection is just becoming significant. The temporal development of the temperature shows a similar pattern to that 

in Fig. 2(a), with the temperature increasing approximately uniformly over the entire cross section of the reactor over the 

first 2 seconds of reaction before a hot zone develops above the centre of the reactor due to the effects of the convection. The 
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location of this hot zone is similar to that in Fig. 2(a), which is to be expected given the similar intensities of natural 

convection. The shape of the temperature contours is also qualitatively similar in the two cases. Where Fig. 2(a) and (c) 

differ though is in the magnitude of the temperature gradients. Whilst the case with Bi = 10 in Fig. 2(a) shows a cold zone, 

with a temperature close to its initial value, toward the bottom of the reactor and around the wall, when Bi is decreased in 

Fig. 2(c) then these regions show significant warming. There is therefore still spatial variation in the temperature in this case, 

but the gradients are considerably smaller. If the development of the velocity field is examined there is again some similarity 

to what is seen in Fig. 2(a) i.e. there is an area of higher speed that develops in the centre of the reactor after approximately 1 

s of reaction and a region of higher speed flow near the wall. It is interesting to note that this downflow close to the wall 

takes longer to develop in this case than it does for the higher Bi case. This is most likely due to the fact that the wall 

temperature is much larger in Fig. 2(c) than in Fig. 2(a) and therefore the descending gas is cooled less and so is less dense 

and hence there is less of a buoyancy driving force for downflow. 

Figure 2(d) shows the development of temperature and speed for Bi =1 and Ra = 105. It can be seen form Fig. 2(d) that the 

temperature increases virtually uniformly over the entire cross section of the reactor for the first 3 s, with only a small cold 

zone existing toward the bottom of the reactor. Subsequently, the hot zone begins to develop close to the top of the reactor. 

Its location is very similar to that seen in Fig. 2(b) for Bi = 10, but as was the case for the low Ra system at Bi = 1, the 

variation in temperature throughout the reactor is much less than in the higher Bi cases. Thus, the hot zone in Fig. 2(d) (e.g. 

at t = 12 s) is much larger than that seen in Fig. 2(b) (e.g. at t = 6 s). The development of the speed in Fig. 2(d) in comparison 

to that in Fig. 2(b) is also interesting. In both cases after ~ 1 s a region of relatively strong upflow develops about the 

centreline. Subsequently, a region of faster downflow along the wall in the upper half of the vessel emerges. It is interesting 

to note that the extent of this region is much less in the case of Bi = 1 in Fig. 2(d) than when Bi = 10 in Fig. 2(b). As 

discussed above, this is most likely due to the higher wall temperature that exists in the lower Bi case. As the flow field 

develops in Fig. 2(d) it is clear that flow near the vertical axis in the top half of the vessel is more significant than was the 

case for Bi = 10. 

Figure 2(e) shows Bi = 0.1 and Ra = 103. When Bi << 1, the temperature within the system is expected to be approximately 

spatially uniform. It is evident from Fig. 2(e) that this is indeed the case. Virtually no gradients in the temperature are visible. 

The development of the speed is similar to the previous cases with Ra = 103 in that there is a higher speed region around the 

centreline. It can be seen that this region is not however shifted towards the top of the reactor as is the case in Fig. 2(a) and 

(c). This is obviously because there is not a hot zone formed above the centre of the reactor, rather the temperature is 

uniform over the whole cross section. In Fig. 2(f) is the case with Bi = 0.1 and Ra = 105. As in the low Ra case, the 

temperature can be seen to develop similarly across the entire cross section. The velocity field is established in the first 

second of reaction and then changes very little. The intense mixing of course contributes to the spatial uniformity in 

temperature. 

The Effect of Bi on the Maximum Temperature in a Stable System 

It was shown above that the primary difference between the temporal developments of the maximum temperature in stable 

systems as Bi varied was the final temperatures reached, with lower temperatures occurring for lower values of Bi. There 

also seemed to be little difference between the cases at fixed Bi as Ra varied. To elucidate further these effects, simulations 

were performed to capture the maximum temperature that occurs in the steady state for a stable solution on the explosion 

boundary. This was done for a range of Bi and at three values of Ra, i.e. 103, 104 and 105. The results are plotted in Fig. 3.  

 

Figure 3. The maximum temperature in the reactor at steady state found numerically for a stable system on the explosion 

boundary as a function of Bi and Ra. Part (a) shows Bi < 6, whilst part (b) shows Bi < 100. The diamonds are for cases with 

Ra = 103, the squares represent Ra = 104 and the triangles are Ra = 105. The solid line in (a) represents the analytical solution 

(Thomas, 1958) for the case without natural convection. Also plotted are horizontal lines which show the maximum 

temperatures for non-explosive cases with a constant wall temperature (i.e. Bi = ∞). The dotted line is for Ra = 103, the 

dashed line for Ra = 104 and the open dashed line for Ra = 105. 

When Bi = 0, the system is perfectly mixed and as predicted by Semenov, the maximum dimensionless temperature of a 

stable system is 1. When Bi is increased, it is clear that there is an increase in the maximum temperature that can be achieved 

before explosion occurs. Indeed, for Bi > 5, for the range of Ra considered, it can be seen that the maximum temperature 

rises above the value of 1.6 that was predicted by Frank-Kamenetskii for a purely diffusive system. Interestingly, for each Ra 
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when Bi < ~10 there is very little difference in the maximum temperatures achievable in a non-explosive case, and indeed it 

is clear from Fig. 3(a) that for Bi < ~ 5, the maximum temperature is very close to that predicted analytically for a system 

without natural convection. It is interesting to note, however, is that the maximum temperature for each Bi in this range is 

actually seen for the lowest value of Ra. This result is somewhat counterintuitive. Of course, it should be borne in mind that 

these maximum temperatures were derived numerically and the maximum temperature is sensitive to the proximity to the 

explosion boundary, nevertheless the trend is evident for all Bi < 10. This trend is reversed as Bi increases above 20, where 

the increased intensity of convection indicated by a larger Ra results in a higher temperature being achieved in a stable 

reaction. When Bi increases above 25, the maximum temperatures achieved diverge and the effect of the more intense 

convection is obvious. The maximum temperatures then clearly approach the values achieved in a constant wall temperature 

case (i.e. Bi = ∞) asymptotically. Thus, for Ra = 103, the maximum temperature is approximately 2.5, for Ra = 104 it is 3.15 

and for Ra = 105 it is 3.45. Unsurprisingly, all three values are comfortably above the value of 1.6 suggested for diffusive 

systems, with a higher temperature being possible in a system with strong convection, due to the improved heat removal. 

Interestingly, all three values are below the T´ = 5 threshold suggested (Liu et al., 2010) as a criterion for explosion in 

systems with considerable consumption of reactant. The most important consequence of the variation of the maximum 

temperature in a stable system with Bi is that a simple criterion for explosion, based on a constant value of dimensionless 

temperature, may be inappropriate for cases with external heat transfer. This is a topic which clearly merits further study, 

when systems with significant consumption of reactant are investigated. 

Identification of Explosive Conditions as Bi varies 

As has been shown above, the variation of external heat transfer, characterised by Bi, can have a significant effect on the 

behaviour of an exothermic reaction under the influence of natural convection. Of course, one of the most important 

questions that must be addressed is what effect does this external heat transfer resistance have on the tendency of a system to 

explode? To investigate this, many simulations were performed to find the boundaries of the explosive region for different 

values of Bi. These limits are summarised in Fig. 4, which shows a regime diagram plotted on logarithmic scales.  

 

Figure 4. (a) The regime diagram for explosion showing the numerically derived explosion limits (for Ra < 106) for a range 

of Bi. Also shown are two dashed lines which show constant values of Ra. The diamonds show the limit for Bi = ∞, the 

circles show Bi = 100, the triangles Bi = 10, the squares Bi = 1, the crosses Bi = 0.1 and the open squares Bi = 0.01. The 

horizontal lines show Semenov’s prediction, via equation (20), for the explosive limit in a well-mixed system with varying 

Bi. The dot-dash line shows equation (20) for Bi = 1, the grey line Bi = 0.1 and the black line Bi = 0.01. (b) The effect on the 

working point on the regime diagram of increasing the size of the reactor (L) as well as the initial pressure (P0) for different 

orders of reaction n. 

The boundary for Bi = ∞ agrees well with previous studies. The region below the boundary is where explosions occur, and 

that above it represents stable reactions. Two regions of behaviour are shown very clearly in Fig. 4(a). For Ra < 500, 

diffusion dominates and the explosion limit is approximately constant. For Ra > ~1000, then natural convection is important 

and there is clearly a power law variation in the explosion limit of the form 


































C

H

explosionD

H ~  (12) 

where Liu et al. (2008, 2010). found this exponent to be -0.74 for 500 < Ra < 106. The value found in this work is -0.82, 

which agrees reasonably well given the precision with which the boundary was found previously. Simulations for Ra > 106 

(i.e. turbulent flows) have not been considered here, although the value of the exponent has been predicted analytically 

(Liu et al., 2008) to be -2. 

When a small amount of external heat transfer is allowed for (i.e. when Bi = 100), it can be seen that for Ra < 500, the 

explosion limit is virtually identical to that for the constant wall temperature case. As Ra increases above 500 and natural 
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convection becomes more significant, it can be seen that explosions occur at a slightly higher value of DH  than when Bi 

= ∞. This is of course due to the fact that the external resistance to heat transfer lessens somewhat the stabilising effect of the 

increased fluid flow and hence heat transfer from the contents of the vessel to the wall. It is also evident that the power law 

behaviour described in equation (12) still exists, though the value of the exponent is reduced. 

For Bi = 10 it is shown in Fig. 4(a) that the critical value of DH  in the diffusive region is increased slightly and that the 

stabilising effect of convection has been substantially lessened. For Bi = 1, there is still a very slight stabilising effect of 

convection evident for 500 < Ra < 106, however for Bi < 1, the explosive limit has an approximately constant value of 

DH  . It is shown very clearly in Fig. 4(a) that external heat transfer has two main effects viz. it increases the critical 

value of DH   indicating that the system is more prone to explode and it also lessens the stabilising effect of natural 

convection. The effect of some key process parameters on the location of the working point on the regime diagram is shown 

in Fig. 4(b). The initial pressure, which primarily affects the concentration of the reactive species influences both 
n

DH P 0 and 
1

0

 n

CH P . Thus an increase in the initial pressure will move the working point on the regime 

towards the origin and hence make the system more prone to explosion. The nature of this move depends on the order of the 

reaction, and three types of behaviour are shown in Fig. 4(b). Similarly, the size of the reactor will also impact on the 

behaviour of the system. In this case  
2 LDH  and 

2/1 LCH  . Thus at fixed Bi, despite the increase in Ra 

which accompanies an increase in vessel radius, the decrease in surface area per unit volume moves the system towards the 

explosive region. A vessel on an industrial scale is therefore much more likely to produce turbulent natural convection, but 

also more likely to undergo thermal explosion. It should also be noted that Bi also depends on L, although the exact 

dependence of course is influenced by the nature of the heat transfer to the surroundings. If there is forced convection, then 

standard correlations state that the Nusselt number (and heat transfer coefficient) has the form Nu = 2 + a Re1/2 Pr1/3 and so 

Bi ∝ L1/2. Unsurprisingly an increase in L leads to greater heat removal from the surface and therefore potentially moves the 

system in a safer direction. If the heat transfer is by natural convection, then the heat transfer coefficient has the form Nu = 2 

+ a Ra1/4/f(Pr) and hence Bi ∝ L3/4. In both cases, it is implied that the larger the vessel, the closer the system will be to the 

constant wall temperature case. The final parameter of note is the initial temperature. The primary effect of initial 

temperature is on the rate of the reaction, and thus an increase in temperature will reduce the timescale for heating and move 

the working point towards the origin of the regime diagram. This once again makes an explosion more likely.  

The extent to which the stabilising effect of convection is suppressed can be characterised by the exponent in equation (12). 

The variation of this exponent is shown, as derived from a best-fit of the numerical results, in Fig. 5. 

 

Figure 5. The exponent in equation (12), which characterises the stabilising effect of natural convection on the system, as a 

function of Bi. 

Clearly, when Bi is very small, the explosive limit is approximately constant so  is close to zero. The bulk of the variation 

in  is seen over the range 1 < Bi < 100, which is similar to the range reported for main effect of Bi on explosion in diffusive 

systems with consumption of reactant (Boddington et al., 1984).  For Bi > 100, the value of the exponent in equation (12) 

approaches the Bi = ∞ value asymptotically. 

The Frank-Kamenetskii and Semenov Limits 

The numerically derived explosion limits presented in Fig. 4 can be compared to analytical solutions in the Frank-

Kamenetskii and Semenov limits. Frank-Kamenteskii (1969) derived an approximate expression for the transition to 

explosion in a purely diffusive system which can be written as 
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
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Plotted in Fig. 6 are the numerically derived explosive limits for a purely diffusive system and a line representing equation 

(13). There is clearly an excellent agreement between Frank-Kamenetskii’s prediction and the numerical results. As 

observed above, the value of DH  at the explosive limit is approximately constant for Bi > 10 and as predicted by 

equation (13) DH  is proportional to Bi-1 as Bi tends to zero and hence 1+ e / Bi tends to e / Bi.  

Also plotted in Fig. 6 are the limits at different intensities of natural convection, specifically when 40,10CH  . It is 

clear that for Bi < 1, the explosive limit is largely independent of the degree of mixing due to natural convection. This is 

unsurprising as the heat transfer is dominated by the external processes, and the temperature in the vessel is approximately 

spatially uniform. For Bi > 1, the stabilising effect of convection, i.e. the reduction in the size of the explosive regime is 

evident. 

 

Figure 6. A comparison of the numerically derived explosion limit for a purely diffusive system for different values of Bi 

with Frank-Kamenetskii’s approximate expression in equation (13). The diamonds are the numerically derived limits when 

0CH   and the solid line represents equation (13). The triangles represent the transition when 10CH  and the 

crosses the transition when 40CH  . 

At small values of Bi, where external heat transfer is the dominant mechanism, the Semenov limit of a well-mixed system is 

approached. Semenov’s prediction can be re-written in terms of the characteristic timescales used here as 

Bi

e

Semenovexplosion,D

H

3















. (14) 

It is interesting to compare this with the form of equation (13) as Bi tends to zero. In this limit, equation (13) is approximated 

by 

Bi

e
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e
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






. (15) 

which agrees well with equation (14). Equation (14) is plotted for Bi = 0.01, 0.1 and 1 in Fig. 4(a). For Bi = 1, equation (14) 

slightly under predicts the explosive limit and, of course, does not capture the marginal stabilising effect of convection. This 

discrepancy is unsurprising given that there is still some spatial variation in the temperature field. For Bi << 1, the agreement 

between equation (14) and the numerically derived boundaries can be seen to be excellent in Fig. 4(a), with the numerically 

derived results agreeing with Semenov’s prediction to within 2%. This excellent agreement between the analytical 

predictions in both limits not only provides further validation of the numerical methods used, but also shows that the 

inclusion of external heat transfer in systems with natural convection truly bridges these two classical limits. 

Conclusions 

The behaviour of an exothermic chemical reaction occurring in a spherical vessel under the influence of natural convection 

and an external heat transfer resistance, but without consumption of reactant,  has been studied numerically. It has been 

shown that the external heat transfer, as characterised by a Biot number, has very little qualitative impact on the temporal 

development of the maximum temperature in the reactor during explosive and non-explosive reactions. The main 

quantitative effect is that the reactions take place at a lower temperature when Bi is reduced. Indeed, it has been shown that 

the maximum dimensionless temperature achieved in a non-explosive reaction on the explosion boundary increases from 1 

in the well mixed limit to its constant wall temperature value asymptotically. For Bi < ~ 10, the maximum temperature varies 

little with Rayleigh number, but interestingly is lower for higher values of Ra. This is in contrast to what is observed at 
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higher Bi where more intense natural convection means that higher temperatures can be sustained in non-explosive cases. 

This effect may be due to the reduction in driving force for heat transfer from the hot zone of the reactor to the wall. This is 

primarily due to the fact that the wall temperature increases much more significantly as Bi is reduced. Importantly, this 

variation in maximum temperature achieved in stable systems means that explosion criteria based on the maximum 

temperature achieved in the reactor may be inappropriate for systems with significant external heat transfer. 

A region of parameter space where explosions occur has been defined for a series of values of Bi. It has clearly been shown 

that the inclusion of external heat transfer means that the region of parameter space where explosions occur is larger and that 

the stabilising effect of natural convection on the reaction is greatly diminished as Bi is reduced, particularly over the range 

100 – 1. Finally, the numerical results have been shown to agree very well with the analytical solutions of Frank-

Kamenetskii and Semenov in the purely diffusive and well-mixed limits. 
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