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The OSC regulations call for the identification and management of all major accident hazards.  Since their 

introduction, methods for the quantification of hazards arising from hydrocarbons have been developed and 

refined. A great deal of effort has also been (quite rightly) spent on improving the effectiveness of measures in 
place to manage hydrocarbon hazards such that risks are ALARP. For non-hydrocarbon hazards, methods for 

quantifying risks associated with helicopter travel and ship collision are also relatively well developed.   The 

way in which the risks associated with platform collapse due to environmental loads, however, is anomalous.   

Many QRA use the information in Spouge’s guidance on QRA for the frequency of collapse of structures.  

However, in this author’s experience the frequency of structural collapse for structures in the North Sea is 

highly variable.  A majority of structures have such large design safety margins that Spouge is quite 
conservative but others have smaller  safety margins that result in predicted probabilities of collapse greater 

than 1 in 10,000 years.  

This paper examines work performed to predict the frequency of fixed jacket structure failures for a variety of 
structural types in order to examine to what extent the Spouge assumption is conservative for North Sea 

jackets.  It goes on to present a method by which specific major structural elements may be identified as Safety 

Critical Elements (as per the OSC regulations) and concludes by presenting a framework within which the 
SCEs can be managed.  
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Introduction 

The guidance to the 2005 OSC regulations [1] states that “safety-critical elements” means such parts of an installation and 

such of its plant (including computer programmes), or any part thereof – (a) the failure of which could cause or contribute 

substantially to; or (b) a purpose of which is to prevent, or limit the effect of, a major accident.  Guidance to the 2015 

Regulations [2] extends the guidance in that it modifies the term major accident to include those incidents which may result 

in major environmental impact.  In practice, in the following all reference to SCEs would equally apply to SECEs apart from 

the discussions on ALARP which are confined to life safety consequences.  

The management of ageing assets in the UKCS is a key issue for operators and the regulator and has resulted in various 

initiatives such as the HSE’s KP programmes and industry body initiatives which has resulted in various guidance on the 

subject of life extension.  Much of this guidance relates to the management of ageing issues with regards to safety critical 

elements.  Much attention has been given to the management of ageing systems such as fire and gas detection, ESD and 

blowdown systems.  Topsides structures also feature prominently in industry guidance.  In the author’s opinion, the 

management of the supporting structure has not received the attention it merits.    

Why is this?  

In a study performed for the HSE, the author reviewed a number of offshore safety cases held by HSE.  The outcome from 

the study is confidential and is not citable, but its purpose was to risk-rank the platforms in the UKCS with regards to the 

risk due to structural collapse.   Whilst it is not possible to cite the details of the study, it was found that the vast majority of 

Offshore Safety Cases did not report platform-specific data with regards to the risk of structural collapse.  In a large number 

of cases, the QRA report used a figure of 1x10-5 per annum as the risk of platform collapse due to extreme environmental 

events [3].  In many cases, this figure was quoted despite the fact that the organisation knew that the risk of structural 

collapse was actually much less than this.  In summary, the study identified a disconnection between the work that goes into 

assessing the risk of structural collapse and the Quantitative Risk Assessment.  In the vast majority of cases, assuming that 

the platform failure rate is 1x10-5 per annum is conservative, but there existed a significant number for which it was not.   

From the failure to consider the risk of structural collapse within the same goal-setting framework as is done for hydrocarbon 

and transport hazards follows the inevitable failure to ensure that the risks of structural collapse have been managed to levels 

that are ALARP.   Further, advances in drilling and production technology have led to platforms being increasingly 

demanded operate beyond their original design life. An important failure mechanism for fixed offshore installations is 

fatigue failure of individual structural elements which weakens the structure and therefore increases the risk of structural 

collapse.  As structures go beyond design life, the uncertainty of the condition of the platform increases and our confidence 

in our calculations of the risk of structural collapse (should it have been determined) decreases.   

The increasing uncertainty of the risk of platform collapse is addressed in HSE Information Sheet 4/2009 [4] which states 

that “It is important that assessment for life extension takes account of new technology developments in structural 

assessment, particularly in system strength, … Areas of particular progress include the understanding of system 

performance following single and multiple member failure, the effects on fatigue life due to load redistribution and 

structural reliability analysis for the determination of inspection plans and evaluation of system reliability.” What this 

means is that operators should take cognisance of their increasing uncertainty and perform deeper assessments to account for 
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a greater possibility of failures due to fatigue and consider what the effect those might have.  However, as has already been 

stated, the fact that the risk of structural collapse is not generally dealt with in the ALARP framework means that these 

considerations have not generally been adopted by industry. 

The Risk of Structural Collapse 

The risk of structural collapse can be estimated using structural reliability techniques; see for example [5].  Figure 1 shows a 

probability density distribution for load (S) and a probability density distribution for resistance / strength (R).  The risk of 

structural collapse is calculated as the convolution of two distributions.  Simply put, the more the two distributions overlap, 

the greater the probability of failure.  Good design involving the incorporation of factors of safety results in the resistance 

distribution being well-separated from the load distribution with correspondingly low probabilities of collapse.  In the 

author’s experience, structural reliability techniques for UKCS structures often result in very high reliability predictions 

(reliability is the reciprocal of annual frequency of failure).    

 

 

Figure 1 – Probability Density Distributions of Load (S) and Resistance (R) 

If we consider the possibility that a structure may have a member failure due to fatigue (or indeed any other failure 

mechanism) then the result of that is to reduce the strength or resistance of the structure as illustrated in Figure 2.  Many 

older structures were designed with high levels of structural redundancy.  Such structures have multiple load paths and are 

therefore quite resilient to damage.  The loss of any single member is very unlikely to lead to a large loss of structural 

strength.  This is illustrated in Figure 2.  Conversely, more modern structures (especially those designed during the CRINE 

era) are ‘leaner’ and often have lower redundancy.   
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Figure 2 – Effect of Structural Member Failure on Global Structural Strength and Probability of Failure 

The recommendations of HSE Info Sheet 4/2009 is that operators consider the possibility that one or more members have 

failed and that in making that consideration, they can still assure the integrity of the structure and thereby the safety of 

occupants of that structure.  Such an exercise may require an understanding of the likelihood of members failing and the 

effect of failed members on structural strength.   

The calculation of the reliability of a platform then becomes a matter of understanding the likelihood of the platform being in 

a given condition (undamaged or a specific damaged state, where damage is defined as the member being completely 

severed) and the probability of the platform failing given that it is in such a condition.  This is expressed by the following 

equation:- 
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In Equation (1), Pf is the annual probability of structural failure / collapse due to environmental loads.  Pj
storm is the 

probability of a storm that will cause collapse of the structure when it is in the j’th condition.  Pj(t) is the time varying 

probability that the platform is in the j’th condition, where a ‘condition’ describes the amount of damage within the structure.  

Theoretically, there are N! possible damaged states, but it is impracticable to consider all of them.  In the current work, some 

conditions where up to 4 members were considered to have failed was included.   

Probability of Storms 

Every platform has an associated MetOcean study which uses meteorological and oceanographic data to estimate the 

likelihood of extreme weather events.  Work performed by Shell in the 1990s [6,7] mapped across wave heights to structural 

loads and produced a Long Term Load Distribution (LTLD).  The LTLD relates extreme environmental loads to their return 

period and hence probability of occurrence. Once the LTLD is known for a given geographic region, then to estimate the 

probability of collapse simple means mapping the strength of the structure onto the LTLD.  This is shown in Figure 3.  On 

the left hand side of Figure 3 is a schematic of the ‘pushover’ curves which show the maximum strength of the structure.  

There is a family of curves with each dotted line representing a different damaged state.  In reality there are hundreds of such 

curves.  The strengths are mapped across to the LTLD which is shown in the right hand side of Figure 3.   

High Redundancy Structure –
Damage Resilient

Low Redundancy Structure –
Damage Sensitive
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Figure 3 Mapping of Ultimate Strengths to Long Term Load Distribution to Predict Probability of Platform Collapse 

Probability of Members Failing 

Perhaps one of the main reasons that the recommendations made in HSE Info Sheet 4/2009 cited above are not yet widely 

followed, is that the anecdotal evidence seems to suggest that the frequency of member failure is low.  A previous JIP by 

EQE International (now ABS Consulting) conducted in 1999 / 2000 highlighted the fact that, at that time, there was a limited 

number of member failures and those that were found were as a result of initial large, ‘rogue’ defects.  The historical data 

was recorded as a number of failures per platform year, which would have been more helpful had it been recorded as failures 

per member year.  

Probabilistic fracture mechanics models have also been developed but seem to over predict the rate of member failure. One 

issue is that probabilistic fracture mechanics models do not deal very well with the time to initiation which, whilst not being 

a random process, certainly manifests itself as one given the paucity of failure data.    It would be a very valuable exercise to 

conduct another industry survey of recorded member failures in order to construct a database of failures similar to that which 

QRA practitioners use to predict the frequency of hydrocarbon releases.   

In the current work, it was assumed that the probability of failure was related to the amount of fatigue life that had been 

‘consumed’ for a given member.  This approach is problematic in that if 100% of the life was consumed, then the member 

would be assumed to have failed.  The approach was therefore adapted with the forward looking assumption that at each 

inspection interval, it was discovered that no members had failed, resulting in a Bayesian type updating of the original 

assumption relating probability of failure to fatigue life. The way this was done (for expediency’s sake) was to assume that if 

it was predicted that there was a probability of failure >80% for at least one member (and assuming an inspection revealed 

that none had failed) then the fatigue life was stretched such that that probability became 20%.  It is acknowledge that this 

approach may seem somewhat arbitrary, but given the shortcomings in the precursor fracture mechanics calculations, and the 

lack of resources available to revisit the same calculations, the approach seemed reasonable.   
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Figure 4 – Typical Approach for Theoretical Fracture Mechanics Prediction of Member Failure 

An Assessment of Two Different Platforms 

An assessment as described above was carried out for two platforms with very different characteristics from an asset 

integrity point of view.  The first platform, Platform A had relatively high safety factors on structural strength, but relatively 

low fatigue lives.  Conversely, Platform B had lower safety factors on structural strength but very high fatigue lives. The 

question posed was how would through-life reliability profiles look for the two different platforms? 

 

 

Figure 5 – Results of Assessment for Platform A – High Strength, Low Fatigue Lives 

Figure 5 shows the results of probability of failure assuming four-yearly inspection. The effect of ageing, is that beyond 

design life, between the inspections, the probability of having several failed members becomes significant quite quickly.  

The probability of the platform being severely weakened due to multiple member failure is therefore high resulting in failure 

probabilities as high as one in one hundred years.  Also plotted are the company thresholds for individual risk tolerability.   

These results are highly dependent on the fracture mechanics models which are probably over predicting the failure rate of 

individual members.  Notwithstanding that, it is clear that having an understanding of the possibility of multiple member 
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failure is important.  Also worth noting is that if this platform was to be operated beyond the design life, it would not be 

sufficient to quote a generic structural failure rate of 1x10-5 per annum in the QRA.   

The results of the assessment for Platform B are shown in Figure 6.   

 

Figure 6 Results of Assessment for Platform B – Low Strength, High Fatigue Lives 

The results show again that beyond design life, the probability of the structure being in a weakened condition between 

inspections is sufficient and the structure is sensitive to that damage.  The result is that high collapse probabilities are 

predicted beyond design life.  Once again, it would be inappropriate to cite a generic failure rate of 1x10-5 per annum for this 

platform.   

Are Individual Structural Members Safety Critical? 

The preceding examples demonstrate that the failure of some structural members could cause or contribute to a major 

accident.  The structure itself is generally designated as a safety critical element, but is it possible to designate individual 

members or component parts of a structure as being safety critical in order that they receive the greater share of attention that 

SCE designation is intended to necessitate?  

In the previous examples, we included thousands of analyses of the structure in weakened states.  Just as is the case in a 

QRA, the overall likelihood of failure is a summation over all those possible conditions.  In the field, however, if a member 

were to actually fail between inspections then the structure would actually be in that weakened condition.  The risk 

associated with platform collapse would actually have increased. Moreover, is that the platform would continue in that 

condition until the next inspection identified that damage.  This is shown schematically in Figure 7.   
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Figure 7 – Schematic of the probability of collapse of a structure if a structural member actually fails. 

In Figure 7, we see that if an important member fails then the structure is weakened so that its probability of failure 

immediately increases dramatically. This increases with time as the uncertainty of the remainder of the structure increases, 

but the important point to note is that the risk may increase, sometimes quite significantly, and that the operator is unaware 

of this condition until the next inspection by which time the platform may have been subjected to several severe winter 

storms.    

If the risk increases significantly, can we argue that we have managed risks to levels that are ALARP? Or as an analogue, 

would it be sufficient to monitor periodically for hydrocarbon leaks? Would both situations not lead to an unacceptable 

situation in which we are faced with dangerous and undetected situations?  

Structural Monitoring 

Structural monitoring for fixed offshore platforms can be relatively easily achieved.  The principle is simple; accelerometers 

are placed on the topsides structure and the natural response frequencies of the first and second order sway and torsional 

modes are recorded.  Any change in modal response can be used to indicate the presence of damage and sometimes identify 

where the damage is.  Such a system enables the structure to be repaired as quickly as possible and would also inform as to 

the likely increase in the levels of risk exposure.   

In the work reported above, we tested the hypothesis that if the structure is in a damaged condition that reduces the strength 

with an associated, significant increase in risk, then structural health monitoring will be able to detect it.  We assumed that a 

structural monitoring system is capable of detecting changes in frequency of greater than 0.5% [8] and that for a given storm 

direction, the intolerable limit on strength reduction (in terms of its effect on risk and the company’s individual risk 

tolerability criterion) was 0.46.  We then plotted, for every case, what the reduction in strength and change in natural 

frequencies were.  These are plotted below in Figure 8. 
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Figure 8 – Strength Reduction (RRF) and Change in frequency for all damaged cases for one storm direction 

(Platform A) 

What Figure 8 (and others like it not shown herein) shows is that for thousands of analyses all of them that resulted in a 

significant increase in risk were detectable.  Figure 8 shows that for this platform (A), for all single members failed, the risk 

of platform collapse is still in the acceptable region.  The overall risk of platform collapse in the calculation was from 

multiple member failure due to low fatigue lives.   

 

Figure 9 – Strength Reduction (RRF) and Change in frequency for all damaged cases for one storm direction 

(Platform B).  

Figure 9 shows a similar plot for Platform B (low strength, high fatigue lives). One can immediately see from this plot that 

for most single members that fail, the risk of platform collapse is increased to intolerable levels.  Whilst this platform is 

unusual in how low its strength is, it is far from unique.  

In such a case, the risk to personnel would be intolerable. Can we claim to have managed these risks to ALARP if we have 

credible scenarios which remain undetected for several years?  
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A Different Framework for Managing the Risk of Structural Collapse of Ageing Assets 

Figure 10 shows the same ordinates of Figures 8 and 9 broken into regions.   

An undamaged platform is at its original design strength and original frequency.  The starting point for any platform is 

therefore the top left hand side.  If a structural member is damaged, the strength will reduce and the frequency will increase.  

Each structural member damaged will map onto a point somewhere in one of the six regions marked A-F.  These regions are 

described in more detail below.  

 

 Region A.  Member failure results in an undetectable change in frequency.  The increase in risk is not significant 

(risk is still broadly acceptable) 

 Region B. Member failure results in a detectable change in frequency.  The increase in risk is not significant (risk 

is still broadly acceptable) 

 Region C. Member failure results in an undetectable change in frequency.  The increase in risk is significant (risk 

now falls within ALARP region) 

 Region D. Member failure results in a detectable change in frequency.  The increase in risk is significant (risk now 

falls within ALARP region) 

 Region E. Member failure results in an undetectable change in frequency.  The increase in risk is very significant 

(risk now falls within intolerable region) 

 Region F. Member failure results in an detectable change in frequency.  The increase in risk is very significant 

(risk now falls within intolerable region) 

In several studies involving tens of thousands of damaged conditions, for various platform configurations MMI has never 

mapped a point into Regions C or E.  Many points have been mapped into regions D and F.   

What does this mean? Mapping a point into Regions D and F means that the failure of single structural elements will 

increase the risk of personnel to the ALARP region (Region D) or the intolerable region (Region F).  Given this, and despite 

the fact that structural monitoring is being used more, it is somewhat surprising that structural health monitoring is still not 

commonly employed in the UKCS.    If such a circumstance were possible for process safety related risks, the author would 

expect the situation to be treated very differently.   

It is argued that if a fixed platform maps into regions D or F then we may only claim that risks have been reduced to ALARP 

if Structural Monitoring is in place. We would argue that members whose failure maps into those regions should be viewed 
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as Safety Critical Elements.  It could be more strongly argued that if points map into Region F, it is a legal requirement to 

install structural monitoring and adopt an adverse weather working policy including de-manning prior to extreme weather  

Conclusions 

 Previous work showed that the link between structural integrity analysis and the QRA is not consistent and, in 

general, of a poor standard in UK offshore safety cases.  

 Advanced techniques are available for predicting the probability of structural collapse.  

 As platforms go beyond design life, the uncertainty in their condition between inspection intervals increases.   

 Techniques for predicting the likelihood of member failure need improving: Both theoretical models and industry 

data.  

 If structural members fail, the actual risk exposure of personnel increases.  

 A framework has been presented which would enable the designation of certain structural members as safety 

critical.  

 It has been shown that for data derived to date, there would be no dangerous, undetected situations if a structural 

monitoring system were installed.   
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