IChemE webinar – Sustainability SIG

Cheme Chemical Engineering Worldwide

The urban food-energy-water-waste nexus: where urban agriculture meets organic waste management

> Till Weidner 7th October 2019

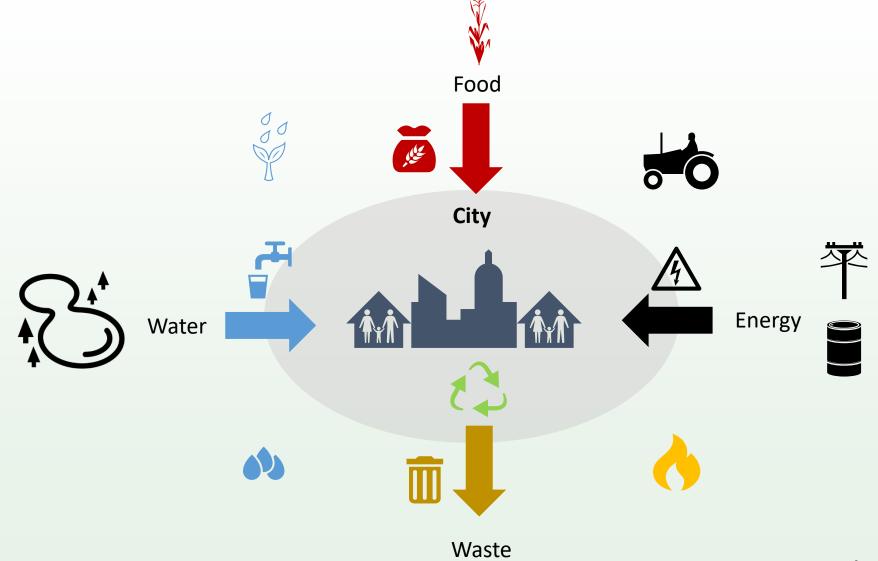
Content overview

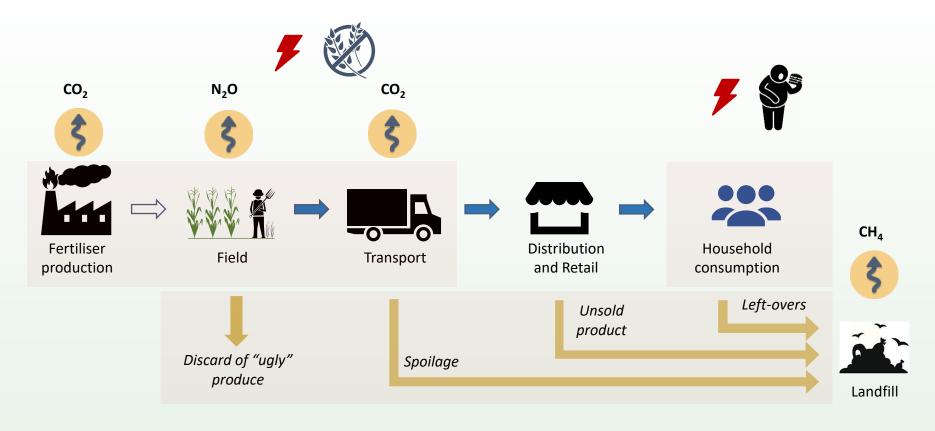
Motivation

1st project – Urban FEWW nexus optimization (urban agriculture with organic waste)

2nd project – Design and evaluation of fully decentralised waste system

(organic waste to agriculture)


Future work


Key messages

Introduction: Urban metabolism and the food-energy-water-waste nexus

Issue 1: The current linear food system is inefficient, unsustainable and fragile

Issue 2: Organic waste is usually treated centrally with low resource recovery

Degree of centralization

Pathway	Landfill	Incineration	Industrial composting	Anaerobic digestion	Home composting
Scale					
Climate impact	Landfill gas	 Energy recovery 	Fertilizer	 Biogas and fertilizer 	 Fertilizer
Resource recovery	Θ	Θ	Nutrients & organic matter	 Biogas & nutrients 	 Nutrients & organic matter
Throughput in Europe ¹ (Mt)	20	18	14 14	3	• No figures

1 Bio-waste recycling in Europe against the backdrop of the circular economy package, European Compost Network, 2017

Proposed approaches have limitations when considered in isolation

Urban agriculture

- On rooftops and greenspaces
- Open-air and greenhouses

Technology

Benefits

- Nutritious food produce with short transport
- Community cohesion and connection to food
- Job creation in urban environments

Reliance on synthetic fertiliser and fossil fuel heating

Weak policy support (e.g. land access)

Uncertainty about sustainability and profitability

Separate decentral biological organic waste conversion

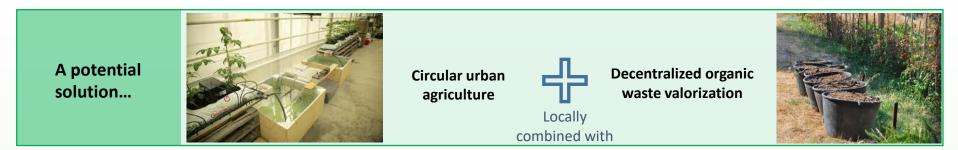
- <u>Primary:</u> Community scale
 composting, anaerobic
 digestion and insect rearing
- <u>Secondary:</u> CHPs, biogas upgrading plants and larvae processing facilities

<u>Benefits</u>

- Local production of fertilizer and soil amendments
- Scale-independent
- Provision of energy, heat and animal feed

Complex governance and logistics of (semi-) decentralised systems

Public perception of waste



Limited or no end use or sink for waste products in cities

Current issues limiting development

- Projects typically planned individually
- Utopian ambitions
- Uncertainty about impact

Changing the narrative for urban food and waste systems by combining approaches

What we know

- Organic waste will have to be treated separately from other waste in the future (EU regulation from 2024)
- Interest from cities, citizens and business in UA and increased food self-sufficiency
- Technical feasibility demonstrated of individual projects integrating both approaches

What we don't now:

- How do location (e.g. climate), city characteristics (e.g. population density) and intensity of growing practices affect self-sufficiency, waste assimilation (i.e. sink) potential and resource requirements of UA?
- How to best utilize organic waste flows to sustainably meet resource requirements of UA?
- How does the proposed combination <u>compare to the current food/waste system</u> in terms of GHG emissions, cost and operatability?

Process and systems engineering tools can help answer techno-economic questions

Life cycle impact

assessment

Process Engineering

Industrial ecology

Geography

Mathematical modelling

Mass and energy balances

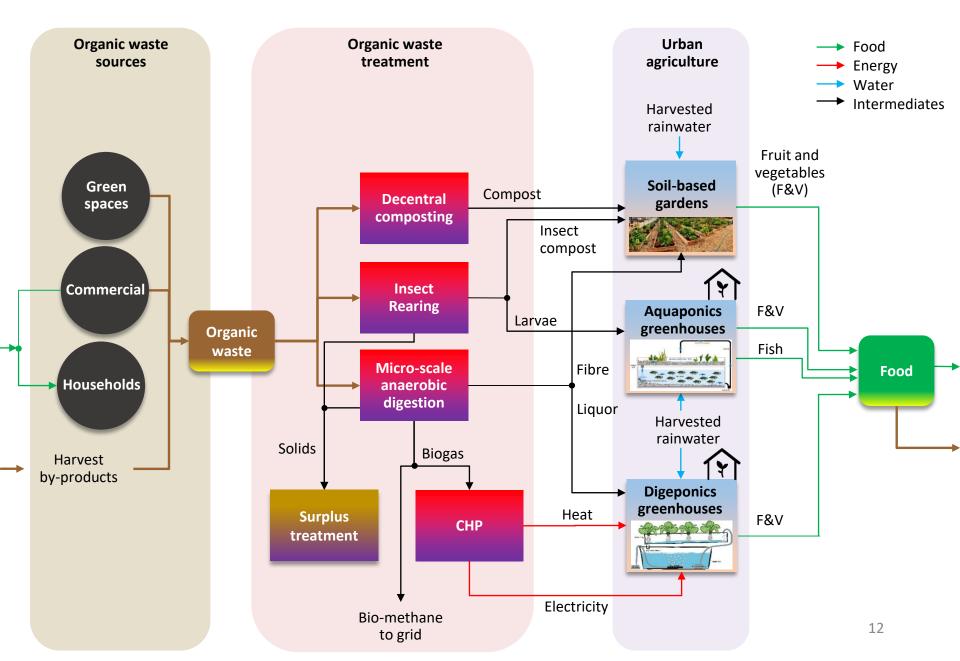
Urban metabolism

Climate & growth modelling

Optimization and scenario analysis

Spatial analysis

9


Two projects have been carried out to shed light on some of the open questions

	Urban FEWW nexus optimization	Design and evaluation of fully decentralised waste system
Scale or system boundary	City-wide (urban center)	District level and metropolitan area
Location	Glasgow, Lyon	Porto
Overview research questions	 Influence of location, city layout and growing practices Optimum waste pathways Carbon footprint comparison 	 Design of localized compost system Local waste logistic and use Economic and environmental comparison
Focus	UA + waste valorization	 Organic waste management + (peri-) UA as sinks
Set of tools	 ArcGIS (spatial analysis) Excel What's Best (optimization) 	 ArcGIS (spatial analysis) Google Distance API (distances) Excel EASETECH (LCA component) 10

1ST PROJECT

Optimizing the urban food-energy-water nexus by combining urban agriculture and organic waste management

A novel urban resource nexus design

Digeponic and aquaponics as novel intensive greenhouse growing methods

Digeponic and hydroponic

Aquaponics

- No soil
 - Circular nutrientwater system
 - Controlled evironment

- Input = fish feed (e.g. fish meal or larvae)
- **Biofilm converts** fish sewage to natural fertilizer

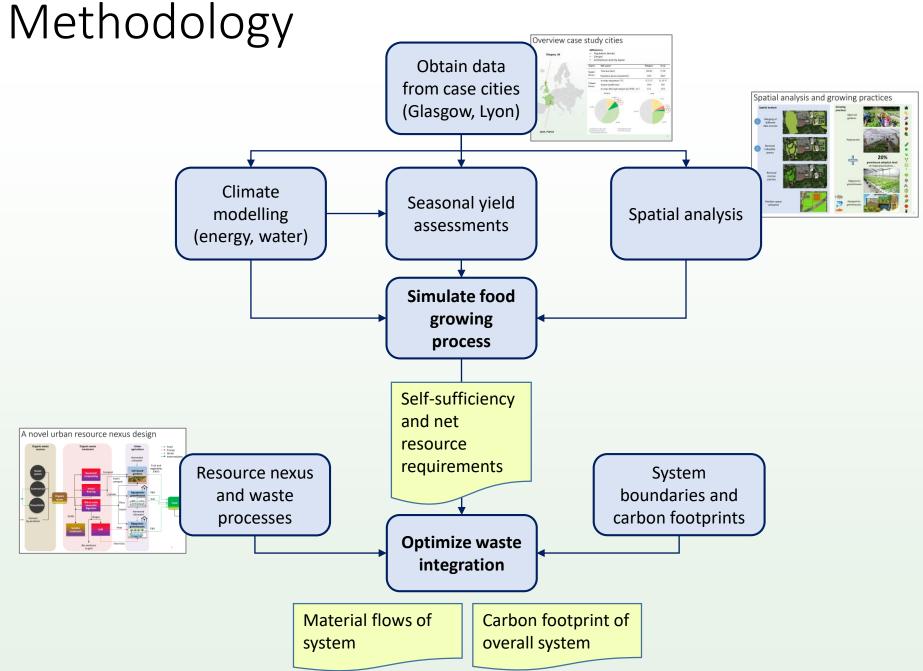
 $NH_3 \rightarrow NO_2^- \rightarrow NO_3^-$

Insect rearing and micro-scale anaerobic digestion for waste treatment

Black soldier fly larvae is fed on food scraps

- Larvae can be fed alive
- Limited hatching

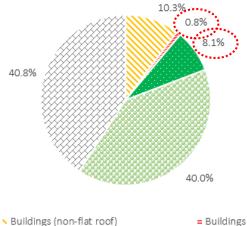
Insect rearing



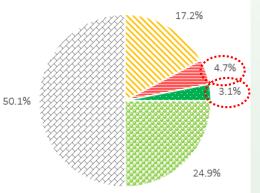
Micro-scale anaerobic digestion

- Digester tank volumes between 2 and 100 m³
- Energy efficient within greenhouses
- Comparable biogas yield to large scale

Overview case study cities


Glasgow, UK

Different in


- Population density
- Climate
- Architecture and city layout

Aspect	Sub-aspect	Glasgow	Lyon
Spatial	Total area (km²)	186.86	47.09
factors	Population density (people/km ²)	3560	6819
Climate factors	Average temperature (°C)	8.73 °C	11.59 °C
	Annual rainfall (mm)	1200	844
	Average daily light integral (mol PAR / m^2)	13.8	18.8
	Glasgow	Lyon	

Applicable greenspace

Impermeable ground area

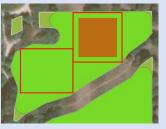
≡ Buildings (flat roof) ⇒ Non-built up area

Lyon, France

Spatial analysis and growing practices

Spatial analysis

Merging of different data sources



Removal narrow patches

Realistic space utilization

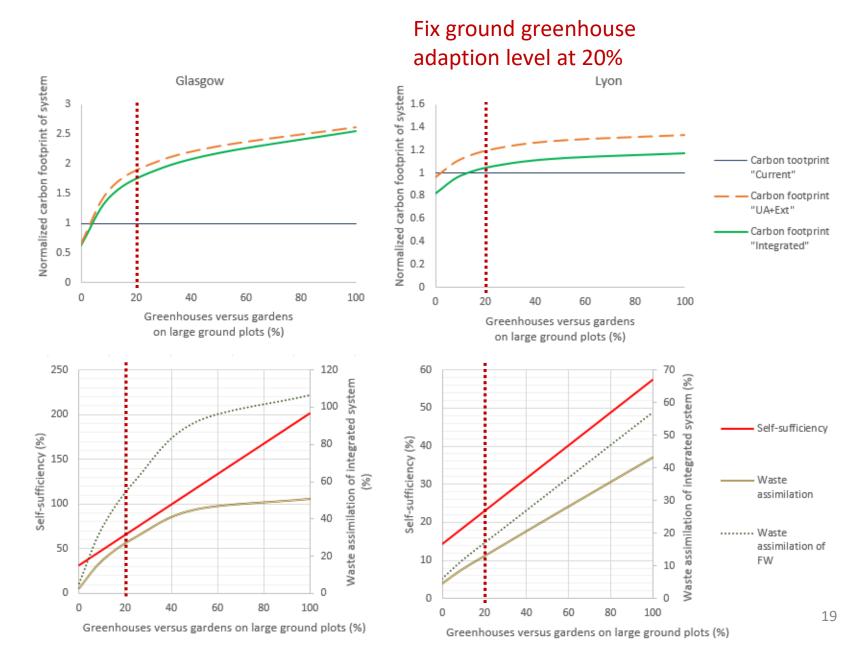
Growing practices

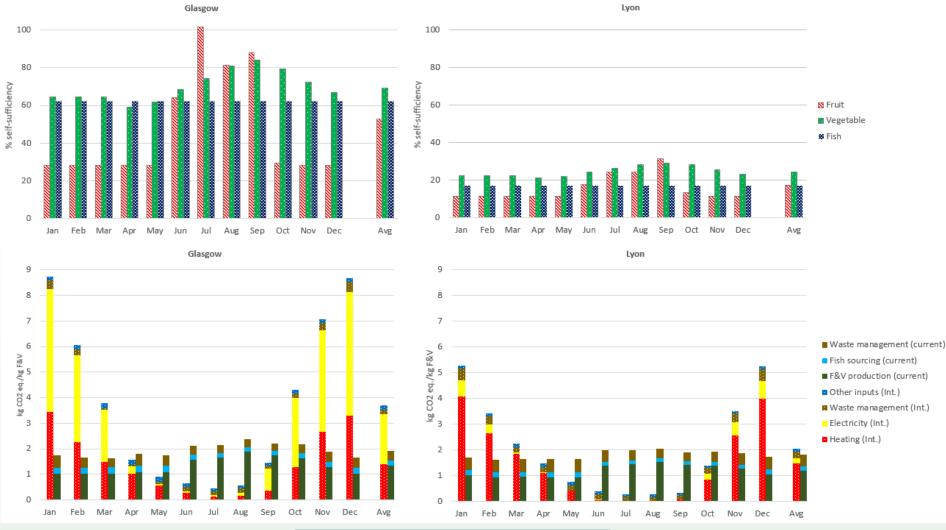
Open-air gardens

Polytunnels

20% greenhouse adoption level on large ground plots....

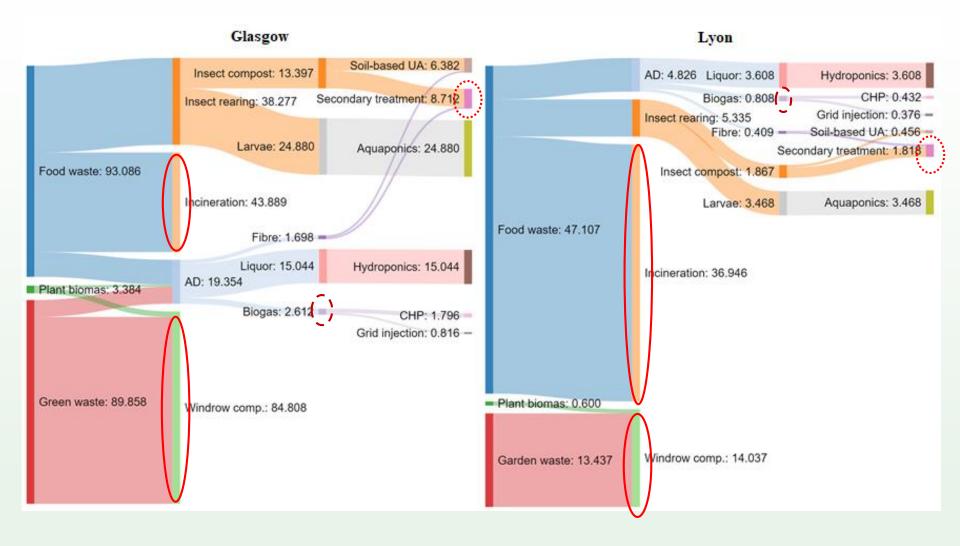
Digeponics greenhouses


Aquaponics greenhouses


Y S © (^) ())) 6 Ø Ø Ø

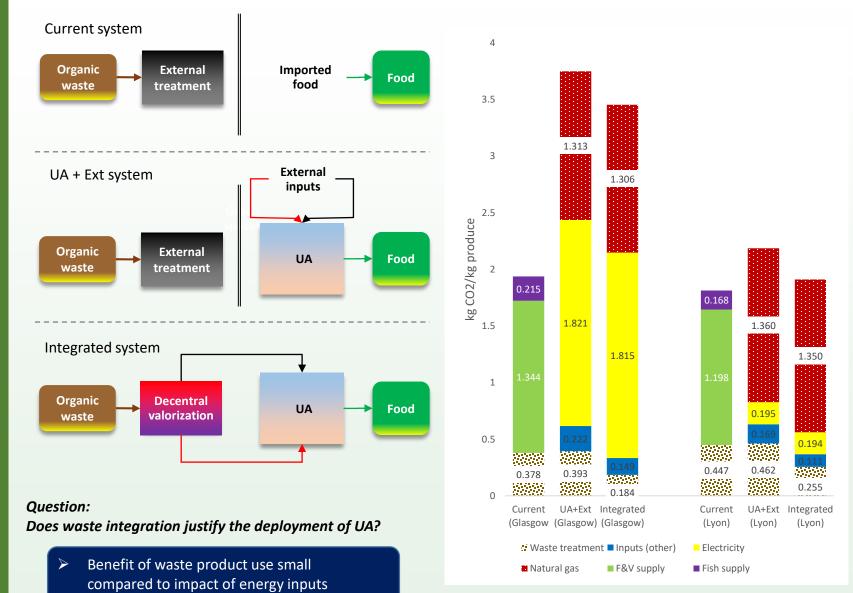

Results

Impact of greenhouse adoption level



Self-sufficiency and carbon footprint

Optimized material flows

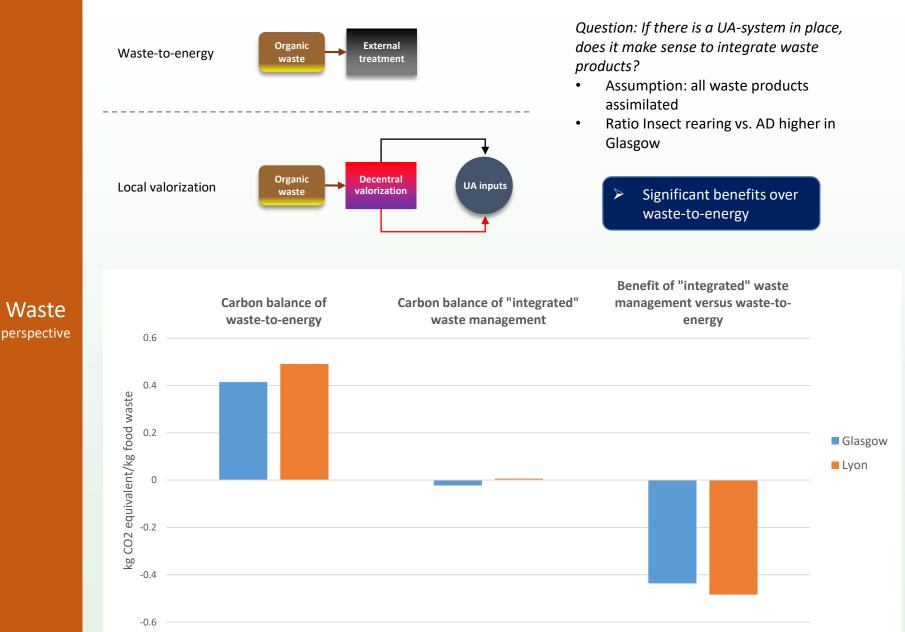


Water use for different harvesting scenarios

Table	Resource metrics for both cities						
Aspect	Sub-aspect	Feature					
Water use (I/kg)	Soil-based gardening	No harvesting	Glasgow Lyon		191.4 224.1		
		Short-term storage	Glasgow Lyon		108.9 144.7		
		Shared reservoir	Glasgow Lyon		18.8 69.6		
	Hydroponics greenhouses	No harvesting	Glasgow Lyon		23.3 28.3		
		Short-term storage	Glasgow Lyon		1.1 5.3		
		Shared reservoir	Glasgow Lyon	-	19.3 0.3		

Waste integration (%)	Resource recovery	P-recovery	Glasgow	13.5%
			Lyon	5.5%

Benefit of organic waste valorization #1



UA

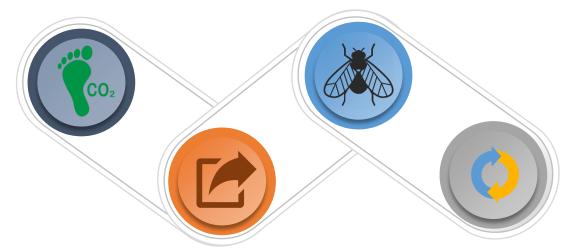
perspective

23

Benefit of organic waste valorization #2

Key learnings

System carbon footprint


Mainly influenced by

- I. Greenhouse production level
- II. Carbon intensity of electricity grid
- III. Climate conditions
- > Take all into account for decision making

Live feeding of insect larvae

for fish production most promising treatment option

Explore and develop further

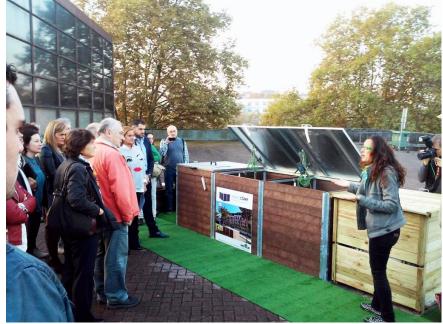
Limited organic waste assimilation

- Explore integration of organic waste with broader scope (e.g. other sinks)
- Best to match throughput of local treatment system with local UA input requirements

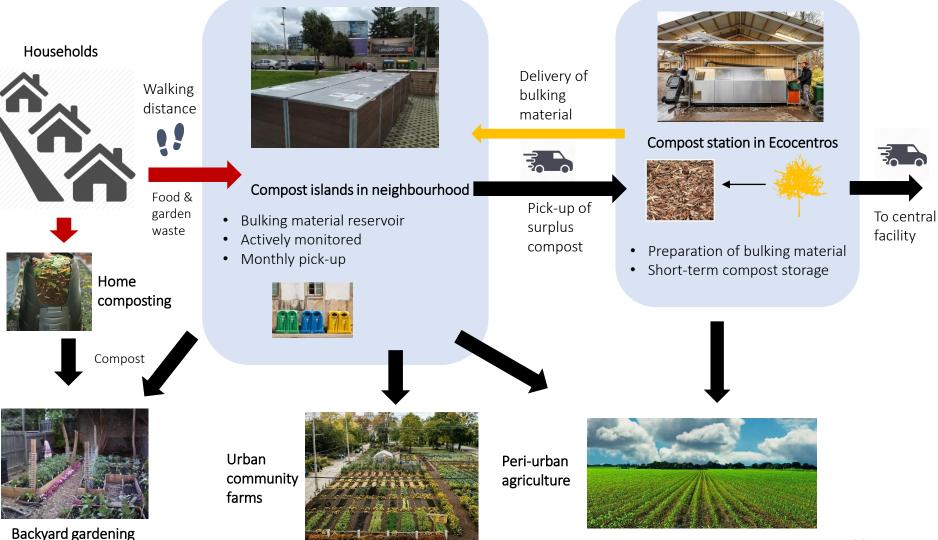
No additional resource burden

- Nutrient, fish feed and water requirements could be fully met
- Similar carbon footprint for limited highintensity growing and low carbon grid
- Increased self-sufficiency possible
- Explore policy for scaling up

2ND PROJECT


Evaluating a fully localised organic waste management system with land application

Inspired by Pontevedra in Galicia, Spain



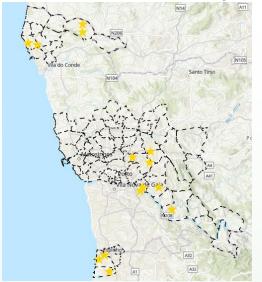
Pioneered monitored community composting

Europe's first car-free city, 20 year history of policies aiming to reduce car use

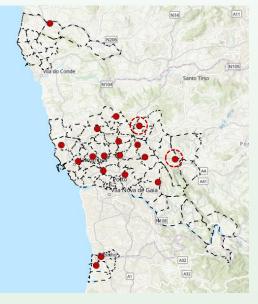
Decentralized composting operations within a municipality

Overview of different scenarios with collection and land application

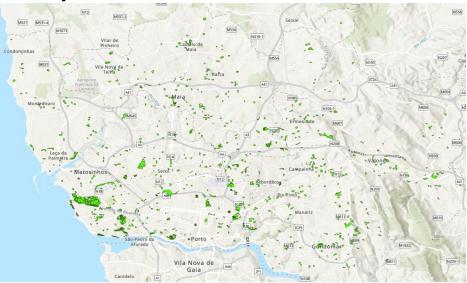
Scenario	Final Arrows Basecase	Centralized anaerobic digestion	Fully decentralized	Fully decentralized + urban agriculture
Treatment	 Centralized via energy recovery of mixed waste 	 Centralized via anaerobic digestion Biogas to biomethane 	 Localized via compost islands or home composting 	 Localized via compost islands or home composting
Collection and logistics	• Mixed waste (3x week)	 Non-organic mixed waste (1x week) and separate organic (3x week) 	 Structure material (weekly) Surplus compost (monthly) 	 Structure material (weekly) Surplus compost (monthly)
Land application	Ash landfilled	 (Productive) land application, distance 45 km 	 Local (<i>existing</i> farms and peri-urban fields, home use) (Produtive) land application, distance 45 km 	 Local (<i>potential</i> farms and peri-urban fields, home use) (Produtive) land application, distance 45 km

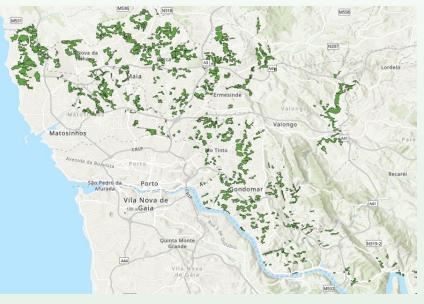

Initial hypothesis about expected outcomes

Hypothesis 1: A fully decentralized model may be more costly but reduces environmental impacts


Hypothesis 2: Given a limited sink capacity, surplus compost produced incurs high cost when it has to be brought out of town

Hypothesis 3: Creating additional urban farms reduces the cost incurred by compost logistics significantly


Spatial analysis inputs


Existing urban farms¹

Existing ecocentros serving municipalities

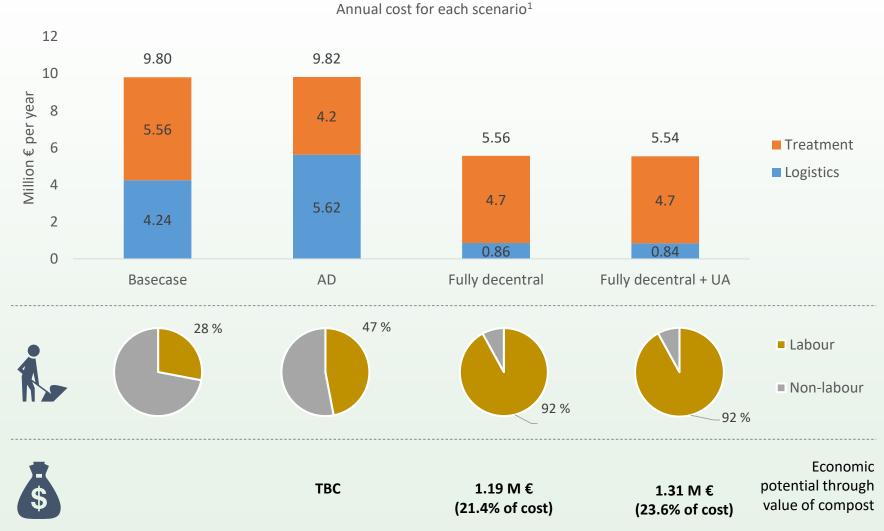
Land potentially convertible to urban organic farms

Peri-urban farmland

31

Spatial analysis: location-allocation

To determine walking distances



Waste generation points Each block one point Generation according to CENSUS and seasons (around 835,000 inhabitants)

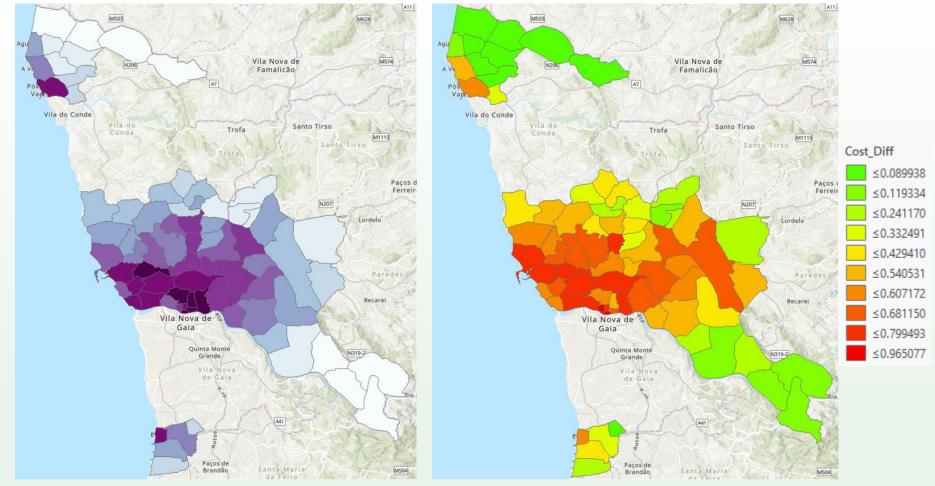
Locations of compost islands Star: chosen as location Grey: potential site

Results

Economic assessment – metropolitan area of Porto

TENTATIVE RESULTS

Environmental assessment – metropolitan area of Porto

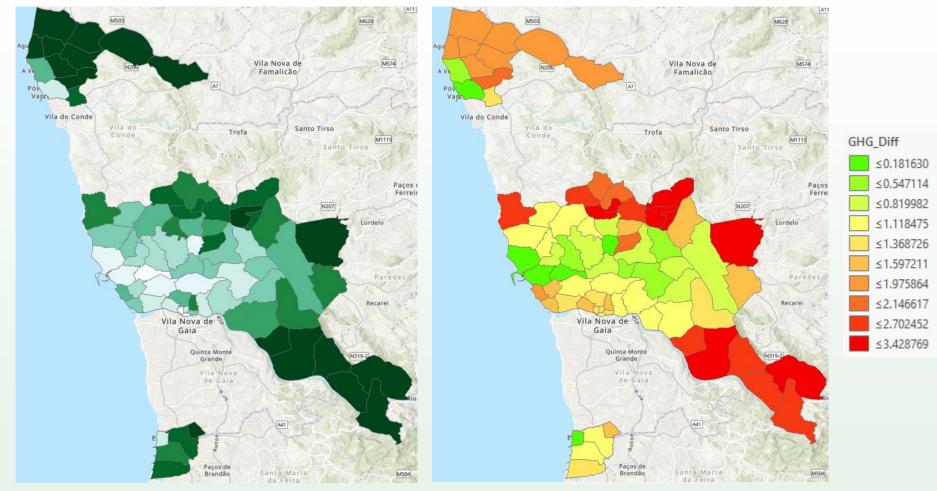


Influence of assumptions on emissions

Scenario	Aspect	Basecase ¹	No increased renewables	Optimized home composting 50%	>200m compost island distance	100% productive surplus use	
	Waste collection						
Incineration (basecase)	Waste treatment						
х <i>г</i>	Total	1,609	-2,196	1,609	1,609	1,609	
	Waste collection						
	Waste treatment						
Anaerobic	Biomethane credits						
digestion	Digestate (application, fertilizer, transport)						
	Total	-1,681	2,406	-1,681	-1,681	-5,083	
	Compost surplus logistics						
	Structure material logistics						
Compost	Compost process emissions						
scenario	Fertilizer replacement benefits						
	Compost application emissions						
	Total	1,465	1,065	912	1,144	1,129	
	Compost surplus logistics						
	Structure material logistics						
Compost scenario	Compost process emissions						
(+UA)	Fertilizer replacement benefits						
	Compost application emissions						
	Total	1,386	985	833	1,061	1,125	
Unit: tonne CO2 / year		2,000 1,000 0 BC AD C C+	3,000 2,000 1,000 0 -1,000 BC AD C C+	2,000 1,000 0 BC AD C C+	2,000 1,000 0 BC AD C C+	2,000 0 BC AD C C+ -2,000	
TENTATIVE RESULTS		-1,000 -2,000	-2,000 -3,000	-1,000 -2,000	-1,000 -2,000	-4,000 -6,000	

36

Spatially sensitive results by district – cost difference to basecase

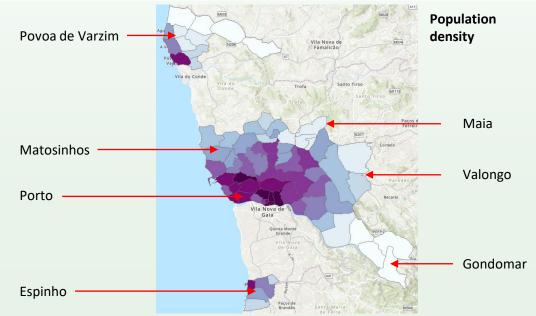


Percentage cost difference to basecase

Population density (darker equals higher)

TENTATIVE RESULTS

Spatially sensitive results by district – GHG emissions difference to basecase¹


Rate of home composting (darker = higher) Percentage GHG emissions difference to basecase

TENTATIVE RESULTS

Local compost use and generated surplus

Municipality	Item Unit	compost surpl (current) %	lus	compo (UA+) %	ost surplus	required to assimilate all compost		Sink gap
Espinho			50.6 %		28.4%	0.5%	2.4%	-1.8%
Gondomar			11.3%		9.2%	0.5%	0.2%	0.3%
Maia			14.8 %		10.5 %	0.7%	0.3%	0.4%
Matosinhos			54.7 %		48.2%	1.6%	0.3%	1.3%
Porto			89.5 %		73.1%	3.3%	0.6%	2.7%
Povoa de Varzir	n		<mark>74.</mark> 0%		6 <mark>2.6</mark> %	0.3%	0.2%	0.1%
Valongo			40.8 %		29.5%	0.5%	0.2%	0.3%

Land to UA conversion Land to UA

Key learnings

Increased urban farming does not change outcome substantially

The collection of surplus compost and its distribution only contribute a small amount to the overall cost

GHG emissions dependency on compost practices and use

Home composting with poor monitoring and non-productive land application make composting less sensible

Centralized treatment more costly

Non-labour expenses much lower for decentralized small-scale technology

Limited sink potential in metropolitan area

Even with peri-urban agriculture too much waste would be generated for productive use within the wider wide area (for studied region)

TENTATIVE RESULTS

FUTURE WORK

Global and facility scale assessments

Global assessment

Questions:

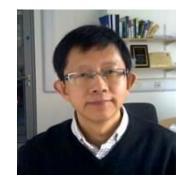
- For which regions is circular UA particular interesting?
- Depending on location, which growing and waste practices should be implemented for an optimum balance between productivity and carbon footprint?

Facility scale assessment

Questions:

- Which symbiotic waste integration pathways are the most promising?
- What can a city expect if they scale up a specific approach?

Sharing of ideas and collaboration desired



How to make the most of combining UA and localized OW valorization

Acknowledgements

Aidong Yang

Very efficient and caring PhD supervisor

Clarendon Fund Scholarship

Financial support

Power user and icons

Presentation visuals

Mike Hamm

Expertise on seasonal growing, hoop- and greenhouses

IChemF CHEA ENGIN

Joao Graca

Collaborator within Porto waste authority

IChemE

Opportunity to share