

My Background

- a) Upstream Oil & Gas (O&G) EPMI (now EMEPMI), Schlumberger, PCSB & Talisman
- b) Engineering discipline: Installmentation & Controls
- c) Project implementation Fig., Detailed besign, Construction, HUC
- d) Major field developmen
 - Oil field development
 - Gas field development
- e) Projects in volving Central Processing Platforms (CPP) & Wellhe & Rlatforms (WHP)

Schlumberger

My Journey in O&G Industry

Been through 4 O&G recessions

a) Recession cycles

i. 1988s

ii. 1998s

iii. 2005s

iv. 2015s

My previous & last O&G erating company: installed three (3) Central Processing Platforms (CPP) & two 2 mini CPPs, since 2002 Each CPP: Gas processing & handlag - Condensate/ crude prodes & hardling Water injection Gas compress - Gas injection Other support/utilitie

01100001 01111010

quest to improve operational efficiencies & WHY

3 CPPs & 2 mini CPPs (aging):

No.	Asset	First Gas/Oil	Year of Operations (to date)
1.	CPP A	2003	≈ 15 yrs
2.	CPP B	2006	≈ 12 yrs
3.	CPP C	2010	≈ 9 yrs
4.	Mini CPP (A)	2005	≈ 13 yrs
5.	Mini CPP (B)	2006	≈ 12 yrs

Major Equipment	Others	CPP A
 Flash Gas Compressor Booster Compressor Separator Fuel Gas Package 	 Pump Heat Exchangers Diesel System Hot Oil System Produced Water system 	First Gas: 2003 Years of Operation (to 15 yr Date):

Major Equipment	Others	CPP B
1. Flash Gas Compressor	1. Pump 2. Heat	First Gas: 2006
2. Booster Compressor	Exchangers 3. Diesel	Years of Operation (to 12 yr Date):
 Separator Fuel Gas 	System 4. Hot Oil	
Package	System	
	Water	
	system	

Major Equipment	Others	CPP C
Flash Gas Compressor	 Pump Heat 	First Gas: 2010
2. Booster Compressor	Exchangers 3. Diesel	Years of Operation (to 9 yr Date):
3. Separator4. Fuel Gas	System 4. Hot Oil	
Package	System 5. Produced Water	
	system	

Major Equipment	Others	Mini CPP (A)
1. Flash Gas Compressor	1. Pump 2. Heat	First Gas: 2005
2. Booster	Exchangers 3. Diesel	Years of Operation (to 13 yr Date):
Compressor 3. Separator	System	
4. Fuel Gas Package	4. Hot Oil System	
	5. Produced Water	
	system	

	Mini CPP (B)	
	First Gas:	2006
gers	Years of Operation (to Date):	12 yr
ed	Date).	
		First Gas: Years of Operation (to Date):

Early 2002-2010

- Oil Price = USD 60 USD 100 per barrel
- Operation & Maintenance (5-10 personnel attended FAT/Gas Compressor String Test)

Past 2010

- Oil Price = USD 40 USD 60 per barrel
- Operation & Maintenance (1-3 personnel FAT)

operate & maintain assets with same/older no. of equipment ???

In essence:

- 1. high no. of static & rotating equipment, process facilities
- 2. of various make & model
- 3. requiring different frequency of maintenance & service
- 4. requiring different ways of operating
- 5. complex operating conditions for best/optimal results

To improve

- 1. safety
- 2. availability
- 3. profitability

Data Analytics (W) maybe the answer

What is Data Analytics??

- a) techniques to analyze data
 - => enhance productivity & business gain
- b) data is extracted from various sources
 - => cleansed
 - => categorized

to analyse different behavioral patterns.

c) promote best decisions

- 1. Data not available
- 2. Too much data
- 3. Expensive software
- 4. Complicated tools

Data analytics - my perspective

- a) Comprehensive? Single? Ultimate? solution/ complete tool to perform predictive analytics such as predictive maintenance, end of life prediction
- b) Analytics results can be produced by a single click
- c) Performed perfectly regardless of data quality

Data Engineer's perspective

- a) Data analytics is very dependent on data, thus the word "data analytics"
- b) Dependent on data means:
 - i. availability of data
 - ii. completeness
 - iii. data quality (accuracy, clean, units)
 - iv. resolution (current & history)
- c) Knowledge of subject matter
- d) or access to SME (subject matter expert)
- e) Availability of asset database

01100001 01111010 01010

Data Analytics Engineer

How data engineer create value from data analytics

- a) bringing engineer closer to analytics, solve more day to day questions independently & enhance their effectiveness.
- b) Thus, self service analytics platform tailored to user need is required.
- c) Self service analytics tools designed with end users in mind. No or minimal model selection, training & validation required; instead user can directly query information from historian and get one click results.
- d) resulted in heightened efficiency & greater comfort with use of analytics information

Data Analytics – Data Engineer's perspective

5 WAYS WE CAN BENEFIT FROM A DATA DRIVE APPROACH

REDUCE REWORK, WASTER AND PROJECT DELIVERY TIME

INFORMATION AT YOUR FINGERTIPS

VISUALISATION

MITIGATE RISK

COMPETITIVE ADVANTAGE

Perquisites to Data Analytics

Time Series Data

Time Series Data

1/1/2019 0:00	1/1/2019	1:00 84	9.8688	529.9109	6.651748	11.65743	27.5149	8 31.069	87				
1/1/2019 1:00	1/1/2010		0.0711	F20 0011	6 662004	11 20442	27.6140	20.074	76				
1/1/2019 2:00	1/11/2019 2:00		11/2019		731 502.529			29.32204					
1/1/2019 3:00	1/11/2019 4:00		-		635 502.414			28.97736					
1/1/2019 4:00	1/11/2019 5:00	1/	11/2019	6:00 1071.	308 502.415	4 7.160931	12.36427	28.77315	31.57306				
1/1/2019 5:00	1/11/2019 6:00	1/	11/2019	7:00 1070.	289 502.636	6 7.160042	12.3249	28.62798	31.41039				
1/1/2019 6:00	1/11/2019 7:00		11/	25/2019 8:00		1/25/2019 9	:00	868.5031	529.9624	6.605516	13.22638	27.86518	32.4768
1/1/2019 7:00	1/11/2019 8:00			25/2019 9:00		1/25/2019 1	0:00	870.1057	530.0441	6.679761	12.96007	27.76647	32.11369
4/4/2040.0.00	1/11/2019 9:00 1/11/2019 10:00		a 10	25/2019 10:0		1/25/2019 1		870.7246	529.9893	6.663726	13.28217	28.51653	33.103
	1/11/2019 10:00		1/.	25/2019 11:0		1/25/2019 1			529.9793			28.86101	
				25/2019 12:0		1/25/2019 1		872.5259		6.670335		29.09877	
	1/11/2019 12:00			25/2019 13:0		1/25/2019 1		873.6854	529.9541	6.667962	13.04238	28.93086	33.33787
	1/11/2019 13:00	1/1	1/2	25/2019 14:0	0	1/25/2019 1	5:00	874.3417	7 530.0206	6.678445	12.88735	28.98743	33.27339
			1/:	25/2019 15:0	0	1/25/2019 1	6:00	874.9345	529.9518	6.692591	13.13061	29.72077	34.17144
			1/:	25/2019 16:0	0	1/25/2019 1	7:00	875.6676	530.0193	6.68286	13.29694	29.69683	34.26428
			1/:	25/2019 17:0)	1/25/2019 1	8:00	875.6441	529.8377	6.60328	12.71736	29.7318	33.97303
			1/:	25/2019 18:0)	1/25/2019 1	9:00	881.1873	521.7464	6.761164	11.45157	28.52892	31.68897

Perquisites to Data Analytics

- comprehensive set of data (e.g heat exchanger)
 - Time Series Data Required
 - Hot Liquid Flow Data
 - Cold Liquid Flow Data
 - 3. Hot Liquid Inlet T Data
 - 4. Hot Liquid Outlet T Data
 - Cold Liquid Inlet T Data
 - Cold Liquid Outlet T Data

Constants Needed

Constants Needed

$$C_{p,hot} = 0.6 \frac{BTU}{lb * F}$$

$$C_{p,hot} = 0.6 \frac{BTU}{Ib * F}$$
 $C_{p,cold} = 0.45 \frac{BTU}{Ib * F} = 100 \frac{BTU}{h * F * ft^2}$

Equations Needed

$$Q_{hot} = \dot{m}_{hot}C_{p,hot} * |T_{in,hot} - T_{out,hot}| \qquad U = \frac{Q_{avg}}{A\Delta T_{lm}} = \frac{Q_{hot} + Q_{cold}}{2A\Delta T_{lm}}$$

$$\Delta T_{LM} = \frac{(T_{hot,in} - T_{cold,out}) - (T_{hot,out} - T_{cold,in})}{ln(\frac{T_{hot,in} - T_{cold,out}}{T_{cold,out}})}$$

Functions of a Data Historian

Data Historian - collection

- storage

visualisation/basic analytics

01100001 01111010 01010

Collection & Storage

Storage

When
HISTORIAN
saves data,
it organise it
into DATA
SETS

Data Historian

- HISTORIAN can be installed onsite
- hosted in the cloud
- multiple
 HISTORIANs can
 share data
 between them or
 mirror their data
 to a corporate
 server

My Journey in Data analytics

Why SEEQ

- advanced data analytics tool: created by engineers for engineers
- creating 'value' from massive data
- 馛 'easy' data handling
- odata alignment
- **o** knowledge capture
- ovisualisation capabilities

Why SEEQ

- a) Analytics tool: created by engineers for engineers
 - i. solve problems quickly
 - ii. advanced Calculation Engine
- b) Creating information from massive data
- c) Data handling
 - advanced coding not required
 - ii. easy to use 'user interface'
 - iii. data cleansing
 - iv. pattern Searching
 - v. analysing multiple data simultaneously
- d) Data alignment
 - i. connect to many data sources
 - ii. match time stamps
- e) Knowledge capture
 - i. publish reports
 - ii. share & collaborate Easily
 - iii. auto-Updating Figures
- f) Visualisation
 - easy, flexible trends & graphs
 - ii. view metric across assets

What we plan to achieve

- Customer A:
 - historical time series data for equipment type A process description, prelim analytics using SEEQ, identified anomalies, capsules of anomalies, why it happened & what can be done
- Customer B:
 - deploy proof of concept on mechanical equipment
 - target: to deploy SEEQ tool, store handle data handling and management.
 - to demonstrate benefit of data analytics in monitoring and diagnostic of equipment
- Customer C:
 - implement, employ data analytics to:
 - i) improve production,
 - ii) improve/ optimise/ monetise offloading/ sales crude.

In Future

- Data Collection
 - Data collection is a standard practice
 - ii. Collect relevant data
 - iii. Create value from data
- Remote monitoring for equipment and diagnostics of most equipment; should not limit to major OEM equipment such as compressors

courtesy of SEEQ

In Future

- Full deployment of advanced data analytics for O&G customer to optimize their operation and maintenance costs, therefore improving their safety, profitability
 - Improve and optimize production
 - b. Minimise/ eliminate UPD (unplanned production deferment)
 - Improved operation and maintenance activities
 - d. Using analytics as a remote monitoring and diagnostic tools
 - e. Predictive Maintenance

THANK YOU

your attentions

ANALYTICS

See of the courtesy of SEE Q