

Use of Modern Analytical Tools for Variability Analysis

Agenda

- High level view of plant operations and importance of reducing variability
- Tradition analysis of variability
- Methods used for more extensive analysis of variation
 - Protective layers
 - Operator performance and alarms
 - Improved controls and procedures
 - KPIs
- Leveraging the study to ensure on-going management of variation

Effective Operation of Manufacturing Plants

* Health, Safety and Environment

Manage Variability from Plan/ Goals – A Systems View

Further optimize performance. Typically complex decisions

Manage typical disturbances using closed loop algorithms and push to optimum

Manage disturbances when control actions are insufficient

Make the plant safe

Traditional Investment Justification

Notes

- 1. Discussions with planners, operations team, engineers
- 2. Remove data that will give high std dev procedures/ upsets

Traditional Investment Justification

Notes

3. Typically assume 25-50% reduction (shown to be achievable by project post audits). Mean shift = 1.65* change in std dev

4. Estimate relationship on (eg) production/ energy use using regression, simulation or experience

Assuming a Normal Distribution

- Assume that 5% of operations can continue outside the expected operating limit
- Mean shifts by 1.65 times the standard deviation reduction

Issues

- Traditional analysis tool = Excel
- OK for simple problems but as analysis gets more complex, Excel becomes too inefficient
- Consequence analyses traditionally have been limited to improved control
 - Don't get total picture
- More modern process analysis tools
 - Reduce time needed (ease of use)
 - Enable broader analysis in available time/ cost
 - Support deeper analysis
 - Enable better collaboration
 - Provide a better basis for future solutions
- Next few slides review analysis done on some projects. In some cases, methodology is still being developed

- Protective layers
- Alarms and operator UI
- Controls and procedures
- KPIs

Analysis of Trips

Q 1 ·	Trip Anal	ysis - Seeq	× +			-	٥	×
$\leftarrow \rightarrow$	C	A Not s	ecure projects.seeq.com:8080/5D88BB00-DD70-40B1-A089-EA71056A8D41/workbook/D9A0445D-67C9-400D-BA72-48D15D16A	51E/worksheet/D3C11C17-6	EEA-4928 🗣 🍳 🛧	e o		:
S	eeq	🗸 25 Connect	ed Adances Trip Analysis - 1		↑ ↑	Get link 🗧 🗧	Andrew	≡
<u>₩</u> `	Calendar	Chain Capsu	It <					
OPENED					AISS	05 Valve pos	ition (Lane 1)
308 -69 -445 -822 -1199 146 -40 -227 -413 -599	l	3. 4. mi	Loss due to valve opening depends on duration. Both Average duration of open and number of openings c inutes	tom trend s calculated. A	hows duratio malysis time	ons < 30	ie 1 (Lane 2	0
308 231 154 77 0		1.	2 signals used. Trip system opens valve on high value	e (1002)	AI5504 Trip Value 1 with Bac	l values Remo	oved (Lane 4	5)
110 73 37 0				Connected				
65 49 33 17 1				□ - ⊞ - olumn Headers				
1		2.	Historian link failure caused bad values in 2	er of Openings	11			
Deta R21.0.43.09	nils P Typ	e here to	search O H; C Average Vent	ge Trip Valve Opened Per	15.636 min			

Analysis of Excursions/Upsets

Analysis of Excursions/Upsets

11/28/2019

Analysis of Excursions/Upsets

Analysis of Control Improvements

 desktop-j6p578m:34216/0225P37-9D48-4270-8256-0A3270036A23Averkbock/A8789F5-575F-488P-953A-92F4137E228Averkbock90299-9E79-418F9-0028-11FAA119899 Comparison of the second seco	
See 2000 2000 (2000 And 2000 And 200	e
 If analysing single process variable with little change in target, relatively simple If analysing process variable with multiple grades, variability analysis is more challenging. Analyse and estimate improvements by grade. 	drew 🔳
 If analysing single process variable with little change in target, relatively simple in ta	
 If analysing single process variable with little change in target, relatively simple If analysing process variable with multiple grades, variability analysis is more challenging. Analyse and estimate improvements by grade. 	
 If analysing single process variable with little change in target, relatively simple If analysing process variable with multiple grades, variability analysis is more challenging. Analyse and estimate improvements by grade. 	(Lane 1)
2. If analysing process variable with multiple grades, variability analysis is more challenging. Analyse and estimate improvements by grade.	
Std Dev of quality by grade	
Challenging. Analyse and estimate improvements by grade.	
2200 2100 1900 9 9 80 70 60	
2100 2000 1900 80 70 60	
Image: Std Dev of quality by grad Std Dev of quality by grad Std Dev of quality by grad Image: Std Dev of quality by grad <	
> Image: Comparison of quality by grad y> 30 yoo 1mm	
Sur Dev of quarty by grad 90 80 60	(1 200 2)
	(Lane 2)
70 60	
60	
50	
Contraction Os Customize Of Capsules R21.0.44.01-v201910232356 See See	er load: 0%
🕂 🔎 Type here to search O 🛱 🤤 🏦 숙 🚍 🧿 🐢 🖃 🚾 🎭 🤹 🖉 🔨 🗩 🗴 🕮 🖉	9 🛃

11/28/2019

Analysis of Control Improvements

11/28/2019

Analysis when Multiple Constraints Active

Q	Raw Data - Analysis of Multiple C × +	- 0 ×
\leftarrow	🔶 C 🔺 Not secure projects.seeq.com:8080/5D88BB00-DD70-40B1-A089-EA71056A8D41/workbook/465F6048-1F46-4808-9EA2-9F9472309BAC/worksheet/FB5FDA96-AEFA-4F6C-B77D-7C 🍳 🛧 🚱	0 🗛 🗄
	Advances Analysis of Multiple Constraints - Raw Data	k 🐣 Andrew 🗮
	Image: Calendar % Image: Chasine Capsule Image: Chasine Image: Chasine Capsule <td< th=""><th></th></td<>	
17564		der ter der der der
13186 8808 4430 51	1. 5 constraints limit feedrate to unit. Bad data removed already. איז	<mark>∲ ³⁸⁹⁴ m²/h</mark> ()/¶() 11101 DN
95 84 73 61 50	2. Capsules used to calculate when each variable limits	Ve position (Lane 2)
188 151 114 77 40		Power use (Lane 3)
» » 855 766 677 589 500		temperature (Lane 4)
97 85 73 62 50		Fan position (Lane 5)
705 541 378 214 50		mp Pressure (Lane 6)
	▲ Details I Q Capsules	Q =
R21.0.43	43.09 O Et C C C C C C C C C C C C C C C C C C	Server load: 0%
		01/11/2019 🖓

Analysis when Multiple Constraints Active

Analysis of Procedure Automation Opportunities

Analysis of Procedure Automation Opportunities

01/11/2019

21

Improved Mgmt of KPIs

1 - Analysis of KPIs - See		× +	
	ecure p		Andrew
Calendar Chain Capsu	le One Lar	Antitysis of KPIS - 1 ane One Y-Adis Spread Labels Dimming Zoom Export Annotate	
52 50 58	/	Yield, Ave	rage Yield (Lane 1)
56		56.129	
52	1.	Daily Average Yield KPI analysed (data already cleansed)	
50	2.	Create metrics	
00 00 00 50 50	3.	 Estimate variability reduction (10% is reasonable) and then mean shift. Need to consider modes/feedstocks and relationship of KPI variability reduction to variability reduction delivered by improved controls 	ev of Yield (Lane 3)
40		Seeq v 25 Connected	
10		Ⅱ ~ New Metric Column Headers	
00			
		Image: Weight of the second se	
0.43.09		Std Dev of Yield 2.1779	Server load:
P Type here to	search	O H; C + +	12:13

Summary

Traditionally estimates very high level Opportunity to provide more insight but need to consider impact of modes and improved controls

Traditional methods accepted. Opportunities to improve analysis (by grade/ mode/ shift) Easy to analyse impact of better procedures

Can gain more insight into performance during excursions Key issue is economic value

Can easily analyse frequency and costs Can consider relationship of frequency with protective layer design basis

Leveraging Analysis Results

For Project Justification

Breakdown of savings (Example)

On-Going Performance

Area	Based on study	Extending the study	
MES	Extend KPI monitoring to analyse KPI variability on a routine basis.	Implement decision support (equipment, process, production) based on modern analytics.	
Procedures	Monitor performance of key procedures and key steps.	Monitor use of automation	
Control performance	Monitor variation of critical process variables.	Monitor use and performance of controllers/ advanced controllers	
Operator performance and alarms	Monitor excursions and excursion metrics for key variables	Analyse alarm metrics (to understand cognitive load).	
Protective layers	Monitor frequency of trips.	Monitor health, maintenance and performance of protective layers (dynamic process risk)	

11/28/2019

Summary

- Modern process analysis tools radically reduce time for analysis
 - Allows broader/deeper analysis
- Tools can then be leveraged to introduce analytics into day-today operations