Advances in Process Automation & Control Practising What I Preach

J Love, 18th November 2019

Overview

- Throughout my academic career, sanity has been provided by involvement with industry in projects that are of a design & development nature rather than research.
- This presentation provides an overview of three projects to which I have contributed:
 - slug control (BP, 10 years ago),
 - radar based early warning system (BP, 4 years ago),
 - wind turbine control system design (Crossflow Energy, current).
- Acknowledgements to BP and Crossflow for permission to present.

- Project concerned a multiphase phenomenon that affects oil wells under certain conditions:
 - slugging is a function of fluid velocities, component fractions and pipeline geometry.
- Two main categories of slugging:
 - hydrodynamic slugging characterised by wave instability at the gas-liquid interface,
 - associated with relatively high flow rates,
 - severe slugging, characterised by periodic build-up and discharge of liquid,
 - associated with relatively low flow rates.

h=1 kr

d=40 cm

(say)

(say)

- During development of the slug, a dynamic equilibrium established:
 - pressure in the feed-pipe balances the head of oil in the riser,
 - as pressure builds up, head increases,
 - blowdown occurs when pressure exceeds the head,
 - slug is pushed out of riser, pressure is vented and cycle repeats.
- □ Size of slug in extreme case = $h.\pi d^2/4 \approx 125 \text{ m}^3$
 - pressure at bottom = $P_1 = h.p.g \approx 90$ bar

- Slugging is highly undesirable for several reasons:
 - topsides: compressor overloading, poor phase separation, platform trips.
 - pipelines: stress cycling and abrasion
 - reservoirs: damage to bed (pores & interstices blocked as sand/solids broken up) due to huge pressure cycle.

Massive benefits from eliminating/reducing slugging:

- typically 8 to 10% increase in throughput,
- 5% increase in platform utilisation,
- reduced capital costs due to less weight/space,
- extension to field life (% not really known),
- quicker start-up after production interruptions,
- reduced carbon footprint per barrel.

Valhall

8

- Various approaches to countering slugging but most common (hitherto) is gas injection:
 - re-compress a proportion of the product gases,
 - inject into bottom of riser down a separate, narrower pipe parallel to riser,
 - has effect of 'aerating' the oil: density is reduced so velocity increased,
 - velocity increases further due to expansion of gas,
 - increased velocity promotes annular flow.
- An expensive option: requires gas injection line to base of well or riser, a compressor and running costs.

- Alternative approach is by means of active (automatic) choking enabled by the availability (since the late 90's) of measurements down the well:
 - instrumentation for temp, pressure and flow,
 - communications of signals to the surface.
- Project to develop an in-house universal slug control algorithm that is robust, intuitive and easily deployable.
- Algorithm development through:
 - simulation (Olga, Matlab/Simulink),
 - rig trials,
 - field trials.

- □ The basic slug control strategy is as follows:
 - measure the pressure drop $(P_1 P_2)$ across the riser,
 - control $(P_1 P_2)$ by manipulating the choke valve,
 - as the dp increases, implies static head is building up,
 - open value to increase flow/velocities, reduces ΔP ,
 - and vice versa.
- **But increasing flow increases frictional losses** ΔP_F ,
 - effect is in opposite, wrong direction,
 - so important adaptation is to compensate for ΔP_F .

Imperial College London

Imperial College London

- Slug controller design was developed using Olga:
 - simulation package of choice in oil and gas industry,
 - rigorous, first principles, finite element dynamic model of severe slugging,
 - expensive (time & effort),
 - P+D controller used for stability,
 - understanding of constraints, esp choked flow,
 - initialisation issues explored.

- Next (my contribution) was to confirm/validate design of slug controller using Matlab/Simulink:
 - model of hydrodynamic slugging in Matlab as basis,
 - control strategy developed in Simulink,
 - P+D controller used for stability,
 - basic slug control strategy plus other variants involving cascade control with slave loops for flow control.
- In parallel to this, pilot scale rig trials were carried out at Cranfield University:
 - successful, so then onto field trials on Valhall.

Imperial College London

- In conclusion, the development of the algorithm is complete and proven:
 - international patent WO 2009/133343.
- The upstream O&G industry is conservative and wary of control and automation, let alone anything complex:
 - despite obvious benefits, assets initially reluctant to commit,
 - algorithm now accepted and deployment is the norm.
- Not only is control better but:
 - throughput is increased and
 - life of well is extended too!

- Project concerned the design and specification of radar based early warning systems (REWS).
- There are many offshore oil & gas facilities including
- drilling rigs, production platforms, etc. Typical risks are:
 - process safety,
 - offshore structural integrity failure,
 - subsea pipeline integrity failure,
 - loss of primary containment (LOPC),
 - errant vessel collision: various collisions & many near misses over the years,
 - helicopter incident.

- Almost every offshore facility has a REWS whose function is to:
 - detect vessel, esp large and heavily laden, appearing over horizon (40km),
 - monitor speed and direction if on collision course or thereabouts,
 - tracking software raises alert if a realistic risk of collision is determined,
 - contact with errant vessel by radio or otherwise attempted,
 - change of course encouraged!

- Much variety in design of REWS used for collision avoidance with:
 - different types of equipment and technology,
 - multiple suppliers,
 - alternative hardware configurations,
 - various software and display configurations,
 - different levels of operator involvement, etc.
- No international standard on REWS' requirements.
- Project was to do groundwork to enable development of internal BP standard on design & specification of REWS:
 - based upon principles of reliability engineering.

Imperial College London

∖-⊡- 23

- If a collision was to occur, the consequence is a function of momentum of vessel and manning level on facility.
- A collision factor was introduced/defined on basis:

 $C(E) = CF \times Manning$ (3)

Collision factors (subject to calibration) banded according to momentum:

Momentum (kN s)	<10 ³	10 ³ -10 ⁴	10 ⁴ -10 ⁵	>10 ⁵				
Collision factor (CF)	0.0005	0.005	0.05	0.5				
Table 1								

Vulnerability allows for fact that operators may be able to avoid consequence of collision by taking to life rafts.

Vulnerability factors (subject to calibration) proposed are:

Shutdown mode		PSD	ES	D
Alarm category	Alert	Warning	Abandon	
Distance to collision (km)	<40			
Time to collision (mins)	>30	15-30	5-15	0-5
Vulnerability factor (VF)	0.003	0.01	0.03	0.1
			Table 2	

- PFD articulated in bands of safety integrity level (SIL) notwithstanding that:
 - IEC 61508 & 61511 do not apply offshore, and
 - most REWS equipment is not SIL rated.
- Assumes demand mode operation (DR<1.0 collisions/yr),</p>
 - PFD = U = 1-A

Availability	0.0-0.9	0.9-0.99	0.99-0.999	0.999-0.9999	0.9999-1.0	
SIL level	0	1	2	3	4	
				Table 3		

- Methodology involved:
 - determine SIL required for various typical scenarios,
 - develop generic reliability models for various typical REWS configurations,
 - distinguish between alert, PSD and ESD,
 - establish that SIL required is satisfied by REWS proposed.
- Typical alert scenario: 50,000 te vessel @ 20 km/hr & 25 km away on collision course, platform has 20 personnel aboard,
 - typical ESD scenario: ditto, but only 4 km away.

- Following formulae are used for the generic models:
 - failure rate (fpy) of elements in series: $\lambda = \lambda_1 + \lambda_2 + ...$
 - proof test and repair time: PTRT = PTI/2 +MTTR where PTI is proof test interval and MTTR is mean time to repair.
 - unavailability: $U_j \approx PTRT \times \lambda_j$ provided MTTF>>PTRT and
 - λ is for dangerous mode failures only.
 - unavailability of elements in series: $U = U_1 + U_2 + ...$
 - unavailability of elements in parallel: $U = U_1 \times U_2 \times ...$
 - availability: A = 1 -U

Imperial College London

- Use historic data from industry for frequency of collisions (accidents, near misses, etc),
- Use realistic failure rate data for equipment.
- Make sensible judgements for relevant factors, eg:
 - proof test repair times,
 - human factors, eg $U_{CRO} = 0.05$.
- Especial care over parallelism: channels physically in
- parallel but functionally in series,
 - coverage of antennae,
 - output channels of ESD.

In general, there are 8 sub-systems involved, end-to-end, in a REWS based collision avoidance system:

Sub-systems are essentially in series although each box may in itself may have some parallelism.

Imperial College London

- Sub-systems, referred to by box no, are:
 - 1. Sensor: comprising radar sensor, transmitter & receiver.
 - 2. Tracker: h/w and s/w of REWS tracking system.
 - **3.** HMI: operator interface of REWS in control room.
 - 4. CRO: control room operator.
 - 5. VHF: means of comms between CRO and Pilot.
 - 6. RMI: radio machine interface on bridge of ship.
 - 7. Pilot: person steering the vessel.
 - 8. SM: steerage mechanism of vessel.
- □ Note: RMI, Pilot and SM are beyond facility's control.

The REWS configuration below is typical for alerts:

Imperial College London

The REWS configuration below is typical for ESD:

Imperial College London

34

- In conclusion, provided insight into challenges of applying IEC 61508 and 61511 to REWS on end-to-end basis.
- Developed credible means of taking into account:
 - momentum of errant vessel,
 - distance/time to collision and consequences of such.
- Demonstrated that SIL requirements can be satisfied by REWS configurations, typically:
- SIL 1 for alerts,
 SIL 2 for ESD.
- No need for standard to be too prescriptive in terms of technology and configuration,
 - plenty of scope for interpretation and judgement.

- Project concerns conceptual design of control system for (relatively) low cost, self sufficient, low power (typically maxm of 7 kW dc) wind turbine aimed at:
 - regions where power grid is unreliable,
 - remote locations (no grid),
 - disaster zones.
- Turbine configuration consists of:

 - diesel generator,
 - battery storage.

- wind turbine,
 power electronics,
- solar panels,
 control system,

- Turbine is cylindrical, some 2 m dia, 3-5 m length and standing some 20 m off the ground:
 - rotates about a horizontal axis,
 - convex blades along perimeter of cylinder,
 - deflector to direct wind over blades in upper half,
 - belt driven linkage to generator,
 - power electronics converts ac voltage into dc current.
- Design of turbine/blades optimised by CFD.
- The whole assembly is rotated according to wind direction and strength.
- Pre-production prototype is currently being commissioned.

Imperial College London

- Overall functionality:
 - suppose the wind velocity is V m/s,
 - let the power available (capable of being generated) from the wind be P_A kW,
 - let power required (demand on the turbine) be P_R kW.
- If P_A < P_R then face wind and generate P_A by manipulating both rotor speed ω and yaw angle θ.
- If $P_A > P_R$ then spill wind and shed load to generate P_R by manipulating yaw angle θ such that an appropriate relative (apparent) wind velocity V_R across blades is achieved.
- □ If V >13.5 then spill wind by adjusting yaw θ until V_R=13.5.

Dever characteristic:

- the relationship between power and wind speed is deterministic and depicted in Figure 1.
- established by CFD and empirically.
- Hard constraints:
 - lower limit of 0 kW at 4 m/s,
 - upper limit of 7 kW at 13.5 m/s (47 kph).

Imperial College London

- The control system is comprised of:
 - a yaw management function (YMF),
 - a cascade system (consisting of master and slave loops) for control of rotor speed ω , and
 - a simple feedback loop for control of yaw angle θ .
- YMF has three inputs:
 - change in wind direction $\Delta \theta$ deg,
 - power required P_R kW,
 wind speed V m/s.
- YMF has two outputs:
 - rotor speed set point ω_{SP} rad/s,
 - yaw set point $\Delta \theta_{SP}$ deg.

Imperial College London

Figure 2

Figure 3 Slave loop

- A Simulink model was used as the basis for the turbine control system design:
 - the model has the same structure as per the previous block diagrams.
- YMF has two additional outputs, $\Delta \theta_{Y}$ deg and V m/s, which are required for the rotor dynamics model:
 - $\Delta \theta_{Y}$ can be thought of as a bias on the yaw set point
- due to any need to spill wind.

Yaw management function YMF:

- uses the power available function PAF to find P_A as per characteristic of Figure 1,
- uses difference between P_A and P_R to decide whether to face or spill wind,
- facing: uses function WSPF to determine ω_{SP} on basis of Figure 1 and rotor tip speed ratio (TSR) data..
- spilling: uses ratio of V_R (apparent wind speed corresponding to P_R) to V to determine Δθ_Y used to bias the yaw set point.

- Yaw logic function YLF:
 - forces output to 1, 0 or -1, subject to a deadzone of ± 5 deg.
- Generator control function GCF: contains:
 - power controller (P action only),
 - generator dynamics function GDF, a model which calculates the current I_G taken out of the generator,
 - a torque balance relating I_G to the braking torque T_B applied to the rotor shaft.
- Rotor dynamics function RDF: a model (allows for inertia, drag and braking) to determine the rotor speed ω.

In conclusion, the Simulink model is robust. Both loops:

- have fast (enough) dynamics,
- the speed control loop rejects disturbances with zero offset,
- handle interactions well,
- relatively easy to tune,
- has been tested over a wide range of conditions.
- There are many approximations but, even with large changes in key model parameters, the model is robust.
- Provides confidence in basis for detailed design.

Thankyou for listening.

