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1 Energy and materials are 
input into a process 

2 Main product is then fed into a 
subsequent process

3 By-products are fed as inputs 
into a third process

4 Energy and materials are input to 
further process main product

5 Large investments have been 
made – lost if material is 
wasted at this stage
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• Reduce raw material inputs
• Reduce process fuel inputs
• Recover resource by-products
• Reduce resource wastes
• Reduce resulting internal recycling
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Industry needs a more holistic and 

integrated understanding of its 
resource use to remain profitable in 

the future low-carbon, resource-

efficient, digital era.  

Resource efficiency in industry
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Resource efficiency in industry
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Basic oxygen 
steelmaking

Case study



Exploiting the value 
in control data

Improving transparency 
through better visuals

Implementing an 
integrated view on 
entire systems
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Integrated resource efficiency analysis

Cambridge University is 
collaborating with Emerson to 

develop novel tools that can 
prepare industry for the future 

low-carbon and resource-
efficient production era

Ana Gonzalez Hernandez
PhD, Emerson



Basic oxygen steelmaking
Control data

Gonzalez Hernandez A, Lupton 
RC, Williams C, Cullen JM (2018) 
Control data, Sankey diagrams, and exergy: 
Assessing the resource efficiency of industrial 
plants, Applied Energy, 218: 232–245 

Control data extracted from 
across 900 ‘heats’ (batches)



EFFICIENCY VARIATION 
Resource efficiency distributions reveal variability

Variation from: 
1. BOS gas recovered
2. Scrap input ratio
3. Fuel inputs
4. Steel produced
5. Material input Where are 

the losses 
generated?

Method overview
Exergy flows



Converter 
process is 
main source

ConverterDesulphurisation

Tapping Secondary 
metallurgy

Basic oxygen steelmaking
Exergy flows
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Two performance modes: arise because 
BOS gas is not recovered for every batch; 
in some batches it is still flared.

Amount/
quality of 
scrap input

Composition/ 
quality of hot 
metal input

Lid gap

Steam 
produced

Basic oxygen steelmaking



Resource efficiency over time

Basic oxygen steelmaking



Ammonia 
production

Case study



Overall process structure:

Analysis of resource 
efficiency in chemical 
plants, helps identify 

improvement 
opportunities and 

sources of inefficiency 

Ammonia production

Harry Michalakakis
PhD (Cam)

Simulated data



Mass flows in an 
ammonia site, 
created using 
simulated data, 
traced from 
syngas production 
to the ammonia 
purification

Ammonia production
Mass flows

Mass flows (kg/h)
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production
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Syngas 
production

Water gas 
shift reaction

CO2
removal

Methanation Compression
Dehydration Synthesis Purification

Ammonia production
Exergy flows

Graded flows 
(GJ/h)

Mass and energy 
flows converted to 
exergy using 
composition, 
temperature and 
pressure



Steam/Water 
flows

Main Process 
Flow

Process
Air

Fuel gases

Heat 
Utilisation 
Section

Primary 
Reforme
r

Secondary 
Reformer
Analysis was extended to 
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Syngas production
Control data



Syngas production
Static analysis
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ON THE GROUND
Operating practices
Daily management

POLICY 
ENVIRONMENT
Political decisions
Regulatory measures

CORPORATE 
STRATEGY
Company vision 
Long-term decisions 

SECTOR DIRECTION
Trade association support
Setting industry objectives 

SCALABLE
A P P R O A C H

Removing the 

NEED to interpret 

performance 

metrics at 

EACH LEVEL 

of management

RESOURCE 
EFFICIENCY

COMPLETE 
LINE OF SIGHT



Resource Efficiency Collective is a research initiative at 
Cambridge University. Together, we seek answers to a 
challenging question: how can we deliver future energy 
and material services, while at the same time reducing 
resource use and environmental impact?


