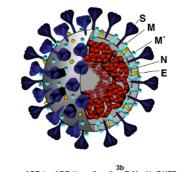


Presenter: Associate Professor Jingxiu Bi School of Chemical and Advanced Material Engineering The University of Adelaide

 $\begin{array}{c} \text{HOW CHEMICAL ENGINEERS COULD APPLY TECHNOLOGY TO} \\ \text{BATTLE COVID-19} \end{array}$

adelaide.edu.au seek LIGHT


Contents

- What is coronavirus (CoV)
- What harmful caused by CoV?
- How coronavirus infect human
- Potential engineering solutions for new drugs and safe vaccines development

University of Adelaide

What is Coronavirus

Coronaviruses (CoV) are a large family of viruses that cause illness ranging from the common cold to pneumonia or more severe diseases

- Genome: linear single-stranded RNA +
- Size: 80 to 220 nm
- Shape: Spherical or helical
- S spike (receptor binding cell fusion)
- E envelope (small: envelope protein, not as abundant as S)
- M membrane protein (transmembrane budding and envelope formation)

+ CAP

University of Adelaide

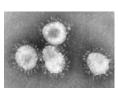
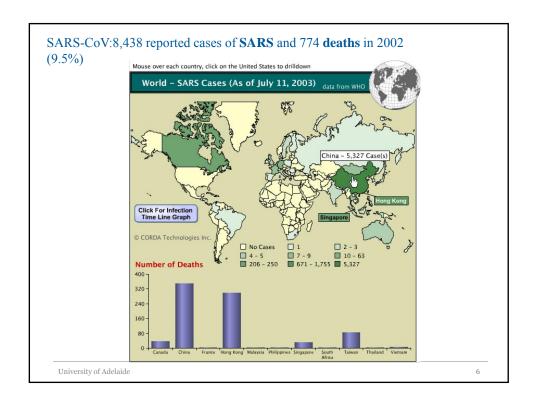
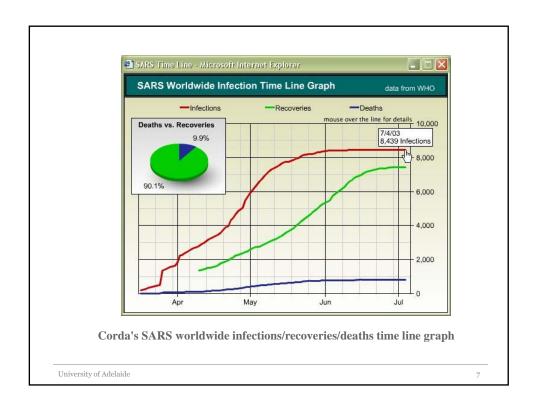
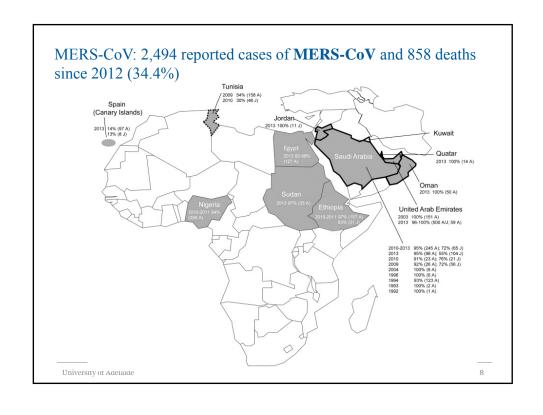

2

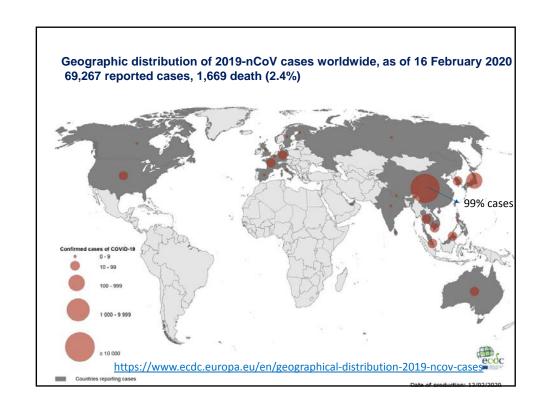
Table 1 Organisation of CoV species

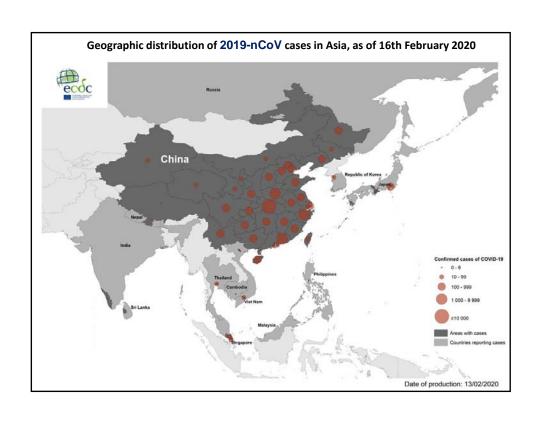
Group	Species	
$\alpha\text{-CoV}$	HCoV-OC43 and HCoV-HKU1	
$\beta\text{-CoV}$	COVID-19 (Dec 2019)	
	Severe acute respiratory syndrome coronavirus (SARS-CoV)	
	Middle Eastern respiratory syndrome coronavirus (MERS-CoV)	
γ- CoV	Tylonycteris bat coronavirus HKU4	
δ - CoV	Rousettus bat coronavirus HKU9	



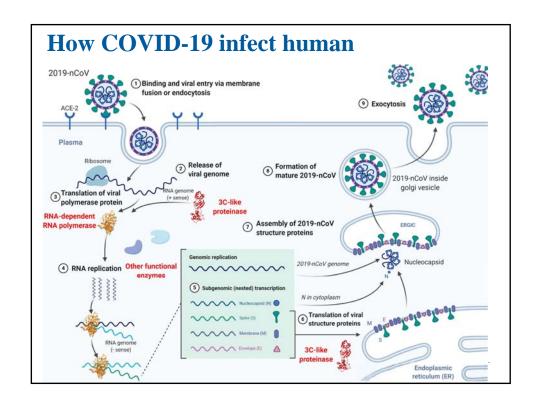

COVID-19


University of Adelaide


What harmful caused by CoV?

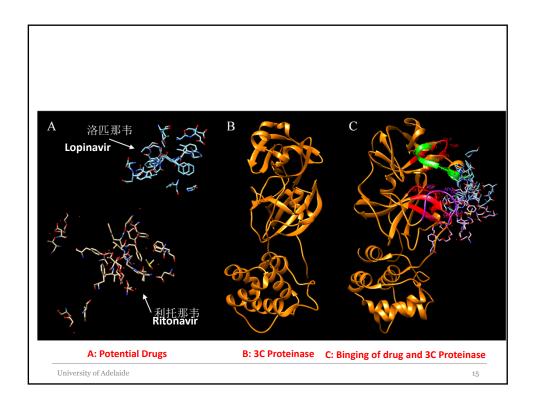

University of Adelaide

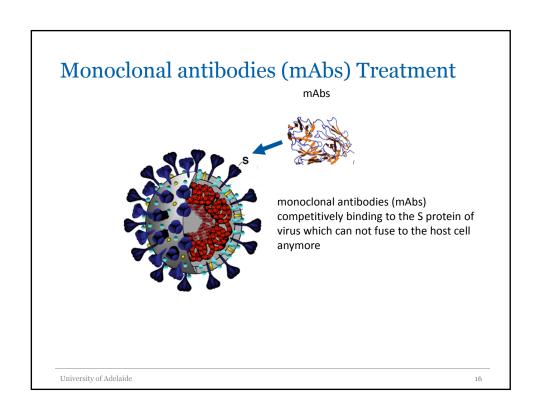
COVID-19


- Current knowledge: covid-19 has higher similarity with SARS-Co. Both binds with Angiotensin-converting enzyme 2 (ACE2).
- Current issue: No specific vaccine and targeted drugs to treat COVID-19
- Some claims: antibodies from plasma of patients who have recovered from the covid-19 contains highly potent antibodies that can kill and remove the virus
- Global negative economic impact

Roads are empty in Wuhan, where public transit has been shut down

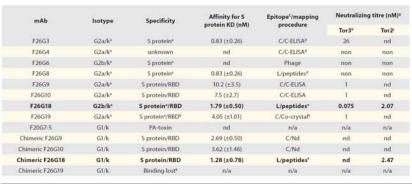
University of Adelaide




Potential Solutions

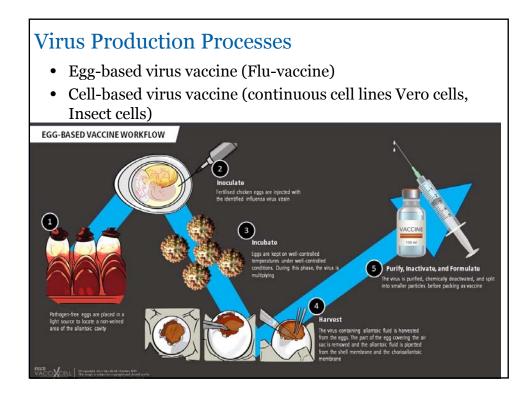
- Drug treatment—Inhibit the virus RNA replication
 - 3C Like Proteinase
 - RNA Dependent, RNA polymerase
 - Other functional enzymes
- Therapeutic monoclonal antibodies to neutralize CoV S-protein
- Prevent vaccines—Immuno response
 - Inactivated virus-based vaccines
 - Recombinant virus like particles (VLPs) based vaccines (eg chimeric VLPs vaccines containing epitopes to bind S protein receptor)

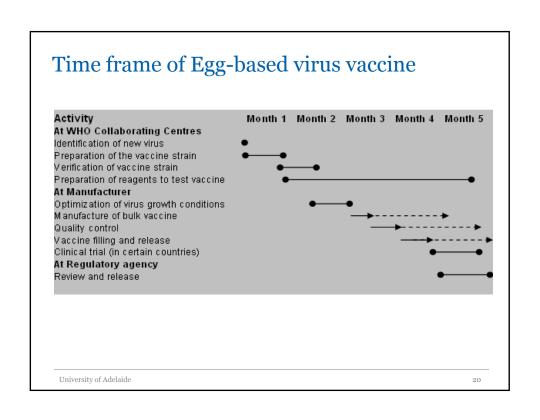
University of Adelaide

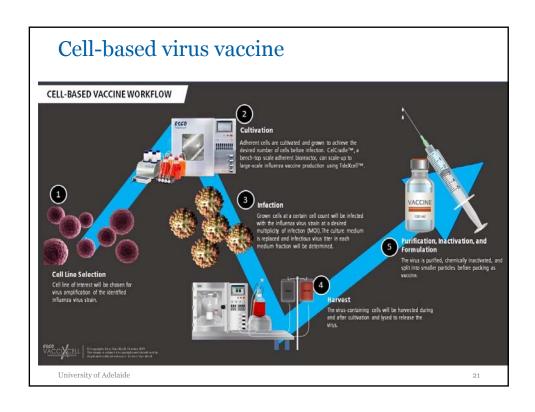

Diseases	Drugs	Target	Note
Severe Acute Respiratory Syndrome (SARS)	Lopinavir- ritonavir	3C-like proteinase	Its clinical efficacy has not been established
Severe Acute Respiratory Syndrome (SARS)	high-dose glucocorticoids and ribavirin	RNA dependent RNA polymerase	Neither treatment had a clear beneficial effect, and immediate and late toxicities were common
Severe Acute Respiratory Syndrome (SARS)	Remdesivir	RNA-Dependent RNA Polymerase	Experimental
Middle East Respiratory Syndrome (MERS)	(IFN)-alpha-2b and ribavirin	•	Treated animals had lower concentrations of serum and lung proinflammatory markers, fewer viral genome copies, and fewer seven histopathologic changes in the lungs.
Middle East Respiratory Syndrome (MERS)	oral lopinavir- ritonavir	3C-like proteinase	A placebo-controlled trial

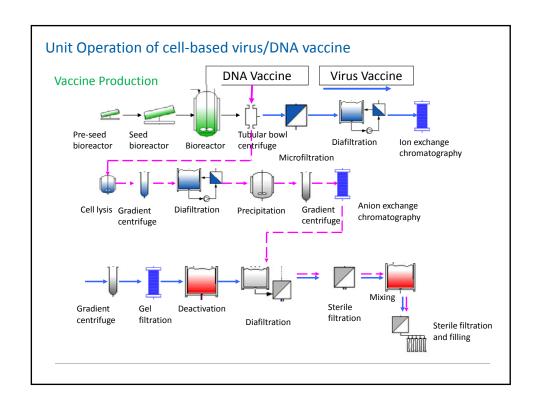
Monoclonal antibodies (mAbs) with neutralizing epitopes of the SARS-CoV S-protein

- Neutralizing mAbs bind ACE2 receptor-binding domain (RBD) of the SARS S protein
- Chimeric mAbs

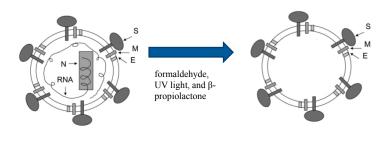

University of Adelaide


Potential Prevented Vaccines -Virus Vaccines


- Inactivated (killed) virus vaccine consisting of virus particles, bacteria, or other pathogens that have been grown in culture and then be activated, eg Flu-Shot
- Live attenuated (weakened) virus vaccine
 use pathogens that are still alive (but are almost always attenuated,
 or weakened), eg Flu Nasal Spray


University of Adelaide

18



Barriers to Virus-based Vaccine

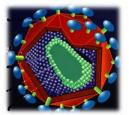
- Up to 6 month time frame for egg-based vaccine (Pandemic infection)
- Special operation facilities required but still not safe for the operation workers
- Potential risk to the patient (virus RNA, host cell protein)

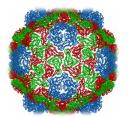
University of Adelaide

22

Barriers to Virus-based Vaccine

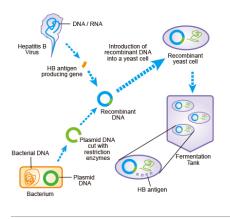
- Current production is slow & expensive. For example, flu vaccine is grown in eggs:
 - six-months required;
 - 100s of millions of specialized eggs;
 - not economic for 'surge' needs; and
 - flu may be deadly to chickens!




- Side-effects from current production methods:
 - Contamination e.g. egg proteins in flu vaccine;
 - Preservatives e.g. Thiomersal.
- Robustness of vaccines issue for developing countries.

Better, Faster and Cheaper Vaccines *via* **VLPs**

- Virus-like particles (VLPs)
 - Virus shells mimic Nature's way of interacting with cells.
 - No genetic material cannot infect at all.
 - Can be engineered vaccines with improved efficacy.
 - Can be grown in cell cultures (yeast or E Coli) much faster and cheaper.



25

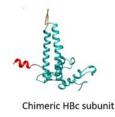
virus like particles (VLPs) based vaccinessuccessful cases

• Recombinant HBsAg (Hepatitis B Surface Antigen) Vaccine against Hepatitis B Virus

- Hepatitis B virus gene encoding major envelope protein (S protein)
- S protein has highest density of epitopes -> most immunogenic
- Under control of *P. pastoris AOX1* promotor
- AOX1 promotor -> methanolinduced production

University of Adelaide

virus like particles (VLPs) based vaccinessuccessful cases


- Human Papillomavirus (HPV)-Gardasil® / CervarixTM
 - 1. GardasilTM: The quadrivalent HPV4 vaccine (Merck and Co., Inc)- contains VLPs that are similar to those found in HPV types 6, 11, 16 and 18.
 - 2. To produce this vaccine, the L1 gene of these genotypes is expressed in *Saccharomyces cerevisiae* (yeast) and is used with an aluminum adjuvant

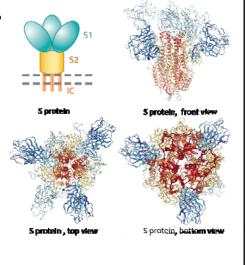
University of Adelaide

27

virus like particles (VLPs) based vaccines-Our Research Group

- Hepatitis B Core Protein VLP as Vaccine Carrier
 - 1. Hepatitis C Virus Infection Disease: Chimeric HBc-HCV vaccine.
 - 2. Epstein-Barr Virus Infection (cancer related) disease: Chimeric HBc-EBV Vaccine
- Current stage
 - ✓ Recombinant cell line development
 - ✓ Lab scale process to produce chimeric VLPs
 - ✓ In-vitro
 - ✓ In-vivo

Chimeric HBc (T=3)


T cell antigen 1

T cell antigen 2

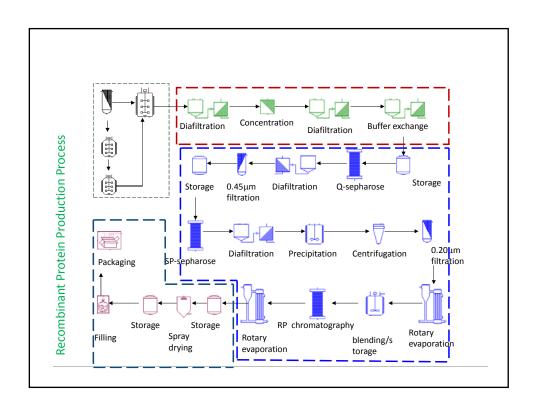
University of Adelaide

virus like particles (VLPs) based vaccines-COVID-19?

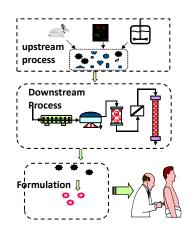
- Current VLPs protein platform as coronavirus vaccine carrier??
- Current stage
 - ✓ ID the potential epitopes and suitable VLPs as carrier for COVID-19 vaccine;
 - ✓ ID suitable cell lines to express Chimeric VLPs

University of Adelaide

29


Clinical Trials for β -coronavirus vaccines Row Status Study Title Conditions Interventions A Clinical Trial to Determine the Safety and • Biological: ChAdOx1 MERS Recruiting Immunogenicity of Healthy Candidate MFRS (adenoviral vectored vaccine expressing MERS-CoV spike protein) MERS-CoV Vaccine (MERS002) Safety and Immunogenicity of a Candidate • MERS Biological: ChAdOx1 MERS Recruiting MERS-CoV Vaccine (MERS001) Safety, Tolerability and Immunogenicity • Biological: vaccine candidate • MERS Completed MVA-MERS-S of Vaccine Candidate MVA-MERS-S • Biological: MVA-MERS-S_DF1 -Randomized, Double-blind, Placebo-Low Dose controlled, Phase Ib Study to Assess the Not yet Biological: MVA-MERS-S_DF1 -Safety and Immunogenicity of MVA-MERSrecruiting High Dose S_DF-1 Other: Placebo Procedure: Blood Test Phase I Study of a Vaccine for Severe Acute Procedure: Urine Test Completed • Procedure: Physical Exam Respiratory Syndrome (SARS) • (and 2 more...) HBc VLPs as COVID-19 Vaccine carrier?????

Challenges of Vaccine Production


- Low yield after multiple unit operation (cost)
- Molecular structure damaged in bioprocess (safety)
- Low through-put by traditional bioseparation process (pandemic infection diseases)
- Stringent quality requirements
 - Percentage purity
 - Absence of specific impurities (DNA and HCP (Host cell proteins)

Vaccine/recombinant proteins process from Lab-Scale to Pilot Scale

What Chemical Enginner could contribute?

- High regulatory requirements quality and safety (FDA,TGA);
- Bioprocesses are not adequately developed for special need;
- The influence of fundamental process parameters is not well understood;
- No protocols for scale-up, technology transfer and raw material, formulation and process changes

University of Adelaide

22

Acknowledgement

HDRs

Mr Bingyang Zhang

Ms Shuang Yin

Ms Yiran Qu

Mr Lukas Gerstweiler

Mr Nhat Hoang Huynh

Mr Afshin Karami

Mr Yechuan Zhang

Co-operators

Prof Anton Middelberg

Dr Ye Jiao

Prof Bo Jin

Dr Kenneth Davey

University of Adelaide

