

Mitigation of 3-MCPDE & GE Precursors in Palm Oil Mill Chew Chien Lye @ Mervin 15th October 2020

Presentation Outline

COMPANY PROFILE

An Integrated Plantation
 Company

MITIGATION STRATEGIES

- Reduction of 3-MCPDE
 Precursor
- Improvement of Oil Quality

PALM OIL MILLING PROCESS & CRUDE PALM OIL QUALITY

- Palm Oil Processing
- Crude Palm Oil Composition
- Crude Palm Oil Specification

3-MCPDE & GE FORMATION & FACTORS

- Formation
- Factors

3

COMPANY PROFILE

• SIME DARBY PLANTATION An Integrated Plantation Company

Company Profile

Integrated Plantation Company

Upstream

Oil palm estate

Mill

Oil palm, rubber & sugarcane estates

 Developing, cultivating and managing oil palm, rubber and sugarcane plantation estates

Milling of FFB and processing & sales

- Milling of FFB into CPO and PK
- Processing and sales of rubber and sugarcane

Others

Cattle rearing and beef production

Downstream

Refinery

Food application

Bulk and refined oils & fats

 Production and sales of refined oils and fats (which includes specialty and end-user oils and fats)

Oleochemicals, biodiesel products & derivatives

 Production and sales of oleochemicals, biodiesel products and derivatives

Others

High-yielding

aenome seeds

Renewables

R&D

 Focused on yield and productivity improvements, increasing revenue streams and developing sustainable practices while pursuing innovative strategies

Renewables business

 Development of green technology and renewable energy which includes bio-based chemicals, biogas and composting

Agribusiness

 Provision of agriculture products and services

Palm Oil Processing

Palm Oil Processing

7

Oil Extraction Rate (OER) = 20-22% **Oil Losses** = 1.40-1.60%

Crude Palm Oil Composition

Crude Palm Oil Specification

- * Additional quality requirement for CPO by January 2020 but was **deferred until** *further notice*.
- ** Proposed as guideline.

PORAM Specifications

Palm Oil Milling Process & Crude Palm Oil Quality Crude Palm Oil Specification

Crude Palm Oil Composition

11

How can we mitigate this issue at palm oil mill?

3-MCPDE & GE FORMATION & FACTORS

a macroscopic perspective

- Formation
- Factors

Formation

- Only presence in refined oil and **not presence** in CPO⁴.
- Formed during the CPO refining process at temperature of more than 200°C - deodorisation process⁵.
- 3-MCPDE & GE formation through oils as DAG or MAG via acyloxonium ions as intermediates in presence of heat^{6,7}.
- 3-MCPDE formation- with present of chlorine.
- GE formation without present of chlorine

Factors

3-MCPDE_{6,8,9,10}

- Precursor :
 - Chlorine, TAG, DAG, MAG
- Temperature
- Heating Time
- FFA, pH?

- Precursor : **DAG**, MAG
- Temperature
- Heating Time

3-MCPDE Factors

Correlation of 3-MCPDE and Chlorine content¹⁴

15

3-MCPDE Factors

3-MCDPE Factors

ORGANOCHLORINE

• Sphingolipid organochlorine content in palm oil during palm oil milling process

Sime

Darb

3-MCDPE Factors

18

• Total Chlorine and 3-MCPD content in CPO and its refined oil respectively for types of dilution water used

GE Factors

Hydrolysis reaction of vegetable oil¹⁶

Sime

Plantation

GE Factors

Enzymatic Hydrolysis

Due to:

- Presence of lipase enzymes on fruit surface.
 - Release when the fruits are **bruised.**
- > Presence of **lipolytic micro-organism**.
- > Need Moisture and Temperature
 - Lipase enzymes are inactivated at temperature of above 50°C.

Before heat treatment (sterilisation)

Depends on:

- Moisture Content.
 - VM high-FFA high.
- > Initial FFA.
 - High FFA content-Faster FFA formation.

Autocatalytic Hydrolysis

- > Temperature.
 - Storage Tank , Temp high-FFA high.
- > Time/Period of Oil Storage.
 - Long time-FFA high.

Before & after heat treatment (sterilisation)

• Controlling the CPO FFA, controls the level of DAG

MITIGATION STRATEGIES

- Reduction of 3-MCPDE Precursor
- Improvement of Oil Quality

Reduction of 3-MCPDE precursor, Chlorine

24

Initiatives	Description	Pros	Cons
Palm fruits cleaning	 Dry & wet cleaning system. Removing the precursors sources of 3- MCPDE. 	 High removal of trash content. Reduction in TC up to 30%. Reduction of FFA by 40% 	High CAPEX.High maintenance cost.High water usage.
Secondary oil segregation	 No restreaming of SC and EFB oil. Main product – Clean CPO Secondary product - TGO 	 Reduction of TC by 30%. Clean CPO with better oil quality and stability 	 High oil loss in waste stream.
CPO washing	 Water washing of CPO. Before vacuum dryer. Pilot/ commercial scale 	 Reduction in TC up to 80%. 	High CAPEX.Additional wastewater.
CPO Dechlorination	 Application of sodium metabisulfite (SMBS). Followed by filtration. 	 Reduction in TC up to below 2 ppm. 	High SMBS costOil loss in spent SMBS.

Improvement of Oil Quality

25

How does improving the oil quality helps to mitigate 3-MCPDE & GE?

Improvement of Oil Quality

Improvement of Oil Quality

Improvement of Oil Quality

	CPO (n =60)		RBDPO (n=30)	
Sample type	FFA	тс	3-MCPDE	GE
Standard CPO	<5%	4.06	3.03	4.56
Standard Cr O		(1.13-6.02)	(2.16-4.39)	(3.21-6.87)
Superior CPO	<1.5%	2.11	1.97	3.28
Superior CPO		(0.99-2.72)	(1.05-2.84)	(2.51-3.88)
Promium CPO	<1.2%	1.77	1.25	1.61
Premium CPO		(0.71-2.02)	(0.48-1.85)	(1.43-2.25)

- The above data was collected based on commercial physical refining route.
- Lower contaminants were observed through chemical refining route.

Improvement of Oil Quality

29

Conclusion

References

- 1. EFSA Panel on Contaminants in the Food Chain (CONTAM), 2016. Risks for human health related to the presence of 3-and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. Efsa Journal, 14(5), p.e04426. https://doi.org/10.2903/j.efsa.2016.4426 (accessed 22 Dec 2019).
- JECFA. (2002) '3-Chloro-1,2-propane-diol. In: Safety evaluation of certain food additives and contaminants', Prepared by the fiftyseventh meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO Food Additives Series 48. Retrieved from http://www.inchem.org/documents/jecfa/jecmono/v48je18.htm (accessed 25 Dec 2019).
- 3. International Agency for Research on Cancer, 1997. IARC working group on the evaluation of carcinogenic risks to humans: silica, some silicates, coal dust and para-aramid fibrils. http://monographs. iarc. fr/ENG/Monographs/vol68/mono68. pdf. (accessed 25 Dec 2019).
- 4. Weißhaar, R. (2008). 3-MCPD-esters in edible fats and oils-a new and worldwide problem. European journal of lipid science and technology, 110(8), 671-672.
- 5. Hrncirik, K., & van Duijn, G. (2011). An initial study on the formation of 3-MCPD esters during oil refining. European Journal of Lipid Science and Technology, 113(3), 374-379.
- 6. Rahn A. K. K., Yaylayan V. A. (2011) 'What do we know about the molecular mechanism of 3-MCPD ester formation', Eur. J. Lipid Sci. Technol., 113, 323-329. https://doi.org/10.1002/ejlt.201000310.
- 7. Zhang, X., Gao, B., Qin, F., Shi, H., Jiang, Y., Xu, X., & Yu, L. (2013). Free radical mediated formation of 3-monochloropropanediol (3-MCPD) fatty acid diesters. Journal of agricultural and food chemistry, 61(10), 2548-2555.
- 8. Freudenstein, A., Weking, J., & Matthäus, B. (2013). Influence of precursors on the formation of 3-MCPD and glycidyl esters in a model oil under simulated deodorisation conditions. European Journal of Lipid Science and Technology, 115(3), 286-294.
- 9. Ermacora, A., & Hrncirik, K. (2014). Influence of oil composition on the formation of fatty acid esters of 2-chloropropane-1, 3-diol (2-MCPD) and 3chloropropane-1, 2-diol (3-MCPD) under conditions simulating oil refining. Food chemistry, 161, 383-389.
- 10. Che Man, Y. B., Haryati, T., Ghazali, H. M., & Asbi, B. A. (1999). Composition and thermal profile of crude palm oil and its products. Journal of the American oil chemists' society, 76(2), 237-242.
- 11. Craft BD, Nagy K. 2012. Mitigation of MCPD-ester and glycidyl-ester levels during the production of refined palm oil. Lipid Technol 24:155–7.
- 12. Craft BD, Nagy K, Seefelder W, Dubois M, Destaillats F. 2012. Glycidyl esters in refined palm (Elaeis guineensis) oil and related fractions. Part II: Practical recommendations for effective mitigation. Food Chem 132:73–9.
- 13. Pudel F, Benecke P, Fehling P, Freudenstein A, Matth aus B, Schwaf A. 2011. On the necessity of edible oil refining and possible sources of 3-MCPD and glycidyl esters. Eur J Lipid Sci Technol 113:368–73.
- 14. Tiong, S. H., Saparin, N., The, H. F., Ng, T. L. M., Md Zain, M. Z. b., Neoh, B. K., Md Noor, A., Tan, C. P., Lai, O. M. & Appleton, D. R. (2018). Natural Organochlorines as Precursors of 3-Monochloropropanediol Esters in Vegetable Oils. Journal of Agricultural and Food Chemistry, 66, 999-1007. https://doi.org/10.1021/acs.jafc.7b04995.
- 15. Nagy, K., Sandoz, L., Craft, B. D., & Destaillats, F. (2011). Mass-defect filtering of isotope signatures to reveal the source of chlorinated palm oil contaminants. Food Additives & Contaminants: Part A, 28(11), 1492-1500.
- 16. Alenezi, R., Baig, M., Wang, J., Santos, R., & Leeke, G. A. (2010). Continuous flow hydrolysis of sunflower oil for biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(5), 460-468.
- 17. Matthäus, B.; Pudel, F.; Fehling, P.; Vosmann, K.; Freudenstein, A. Strategies for the reduction of 3-MCPD esters and related compounds in vegetable oils. Eur. J. Lipid Sci. Technol. 2011, 113 (3), 380-386. DOI: 10.1002/ejlt.201000300

THANK YOU

Acknowledgement

Syed Mohd Hadi Syed Hilmi Norliza Saparin Nik Mohd Farid Mat Yasin Tiong Soon Huat Amirul Al Hafiz Abdul Hamid

