#### Get the best webinar experience

~L/~L

- Welcome! To check your sound quality you are now listening to music

- For a better experience, we recommend you use the **Microsoft Team app** and high-speed internet to access this webinar.
- If you use a web browser instead of an app, we suggest to use Chrome or Edge.
- The visual and sound quality might be compromised if you access the webinar from a mobile phone on mobile network or wi-fi.
- Choose the right speaker and then unmute it.
- We look forward to sharing our insights with you during this webinar starting at 3pm CEST.



#### Get the best webinar experience

- Welcome! To check your sound quality you are now listening to music

1000L

- For a better experience, we recommend you use the **Microsoft Team app** and high-speed internet to access this webinar.
- If you use a web browser instead of an app, we suggest to use Chrome or Edge.
- The visual and sound quality might be compromised if you access the webinar from a mobile phone on mobile network or wi-fi.
- Choose the right speaker and then unmute it.
- We look forward to sharing our insights with you during this webinar starting at 3pm CEST.





09/12/2020 | © Alfa Laval 2 | www.alfalaval.com





# 3-MCPD and GE mitigation in palm oil processing

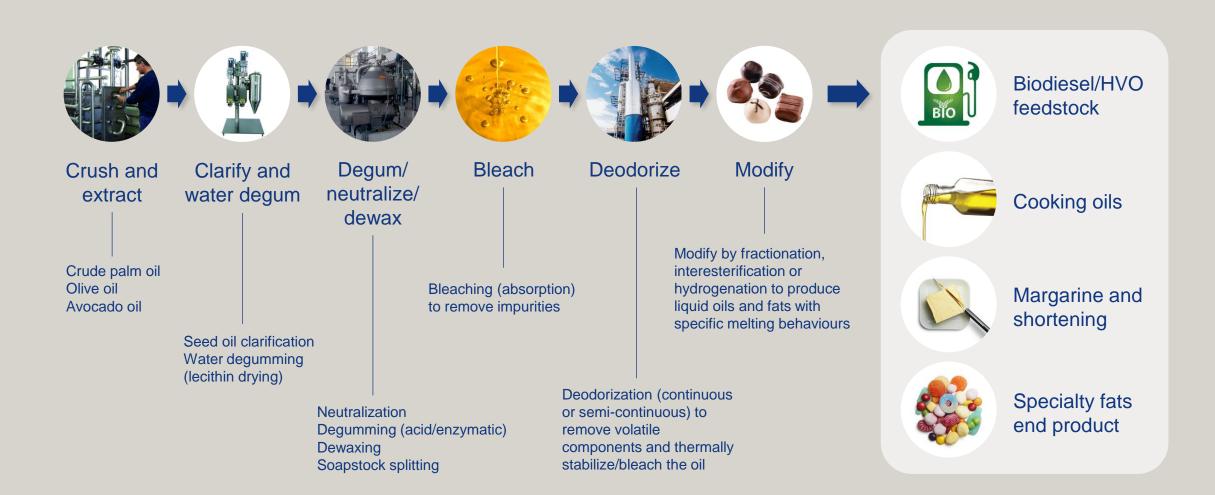
- Webinar 7 May 2020

Alexey Shevchenko

09/12/2020 | © Alfa Laval 3 | www.alfalaval.com

#### Agenda




- A short introduction to Alfa Laval's edible oil portfolio
- Edible oil industry trends and focus
- Introduction to the 3-MCPD and GE issues
- 3-MCPD mitigation in more depth
- Process routes to GE mitigation
- Conclusion

09/12/2020 | © Alfa Laval 4 | www.alfalaval.com

### Our edible oil process line portfolio

1000 L

- Comprehensive solutions



09/12/2020 | © Alfa Laval 5 | www.alfalaval.com



# Industry trends

09/12/2020 | © Alfa Laval 6 | www.alfalaval.com

#### Industry trends and focus

**ベレー** 

- Shaping the future of margarine and shortening



### Population growth

Significant rise in vegan and vegetarian population



Footprint in Asia, Africa and Europe



Increase in demand for plant-based food products



### Industrial margarine market

More affordable, raw plant-based materials



Increased use of plant-based margarines



Demand for low-fat bakery and confectionery products



### Health and wellness

More health-conscious consumers



More low-fat, low-calorie and trans fat-free products



More affordable, raw plant-based materials



### **Environmental footprint**

Focus on image, legislation and utility cost



Water and energy savings



Continued investments in plant infrastructure

09/12/2020 | © Alfa Laval 7 | www.alfalaval.com



# Introduction to 3-MCPD and GE issues

09/12/2020 | © Alfa Laval 8 | www.alfalaval.com

#### What are 3-MCPDE and GE?





#### Why limit 3-MCPDE and GE exposure?



#### **Classified as process contaminants**

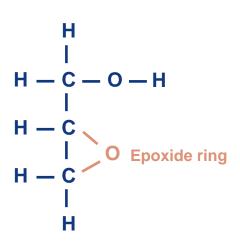
• 3-monochloropropane diol (3-MCPD)

• 3-monochloropropane diol ester (3-MCPDE)

Possibly carcinogenic to humans<sup>1</sup>

Harmful to kidneys (EFSA<sup>2</sup> report 2016)

Glycidyl ester (GE)


Probably carcinogenic to humans<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Classification by International Agency for Research on Cancer

<sup>&</sup>lt;sup>2</sup> European Food Safety Authority

#### Glycidol and glycidyl ester





**Glycidol** 

Glycerol backbone

1 bonded fatty acid

**Glycidyl ester (GE)** 

#### 3-MCPDE and GE have been around for decades



- But have gained more attention in recent years



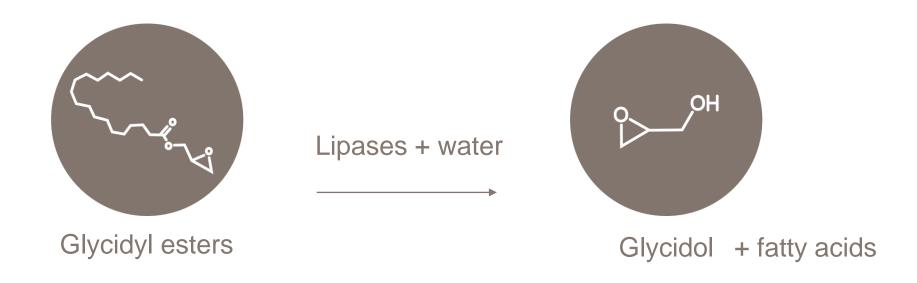
Known food contaminant in hydrolyzed vegetable proteins (HVP) and found in a wide range of daily food

2009

Glycidyl esters (GE) detected in palm oil but 3-MCPDs and GEs not found in virgin oils

2013

European Food Safety Authority (EFSA) identifies margarine, preserved meats, bread and vegetable oil as major sources of 3-MCPD


Jan 2018

EFSA sets the tolerable daily intake for 3-MCPDs at 2 μg/kg body weight/day (0.002 ppm/kg body weight)

2020 and beyond Variable, but definitely at a *very low rate* 

#### Reactions of glycidyl esters





GEs are rapidly digested by gut lipases to form glycidol. Consequently, GEs should be considered as sources of glycidol exposure.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Food Addit Contam Part A Chem Analytical Control Expo Risk Assess. 2013;30(1):69–79. Epub 2012 Oct 22, "Application of gastrointestinal modelling to the study of the digestion and transformation of dietary glycidyl esters", Frank N1, Dubois M, Scholz G, Seefelder W, Chuat JY, Schilter B.

### EU legislation on GE affects supply chain



| Glycidyl fatty acid esters expressed as glycidol                                                                                              | Maximum level µg/kg     |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Vegetable oils and fats placed on the market for the final consumer or for use as an ingredient in food with the exception of the foods below | 1,000<br><b>1.0 ppm</b> |
| Vegetable oils and fats destined for the production of baby food and processed cereal-based food for infants and young children               | 500<br><b>0.5 ppm</b>   |

Commission Regulation (EU) 2018/290, of 26 February 2018



### Malaysian Palm Oil Board licensing conditions

~L/~L

- Effective 1 January 2021

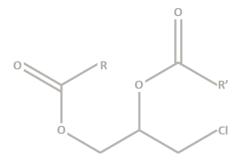
| Parameters              | Processed palm kernel oil | Processed palm oil | Effective date                           |
|-------------------------|---------------------------|--------------------|------------------------------------------|
| GE (max.)               | 1.0 ppm                   | 1.0 ppm            | 1 January 2021                           |
| 3-MCPDE (max.) 1.25 ppm | 1.25 ppm                  | 2.5 ppm            | 1 January 2021 until<br>31 December 2021 |
|                         |                           | 1.25 ppm*          | 1 January 2022                           |

<sup>\*</sup> Effective date for integrated refineries, exporters and importers is 1 January 2022. The effective date for independent refineries is 1 January 2023.





## Challenges in 3-MCPD/GE mitigation


09/12/2020 | © Alfa Laval 16 | www.alfalaval.com

#### Factors contributing to 3-MCPDE and GE formation



Chloride and high temperature

#### 3-MCPDE molecule



#### GE molecule

$$H_2C$$
 $O$ 
 $C$ 
 $R$ 
 $O$ 

- 3-MCPD and its esters are formed in heat-processed, fatty foods from glycerols or acylglycerides in the presence of chloride ions.
   Much of the 3-MCPDE found in foods is present as fatty acyl esters.
- Factors contributing to 3-MCPDE in refining of palm oil:
  - Presence of chloride in the crude palm oil (CPO), bleaching clay and steam
  - Acid degumming and acid-activated bleaching clay
  - High temperature during deodorization

- GE is formed from diacylglyceride (DAG) and monoacylglycerols (MAG), at temperatures above 230°C. GE is correlated with DAG content.
  - DAG in palm oil is between 6–12% whereas normal seed oil is 1–5%

#### Beware of GE migration into palm olein fractions



#### What happens in the dry fractionation process

• RBD\* palm oil GE = 0.6 ppm

Palm olein IV 64 GE = 0.9 ppm

By regulation GE < 1 ppm

GE suggested for RBD palm oil GE = 0.5 to 0.6 ppm



<sup>\*</sup> RBD = Refined, bleached and deodorized

#### Process challenges

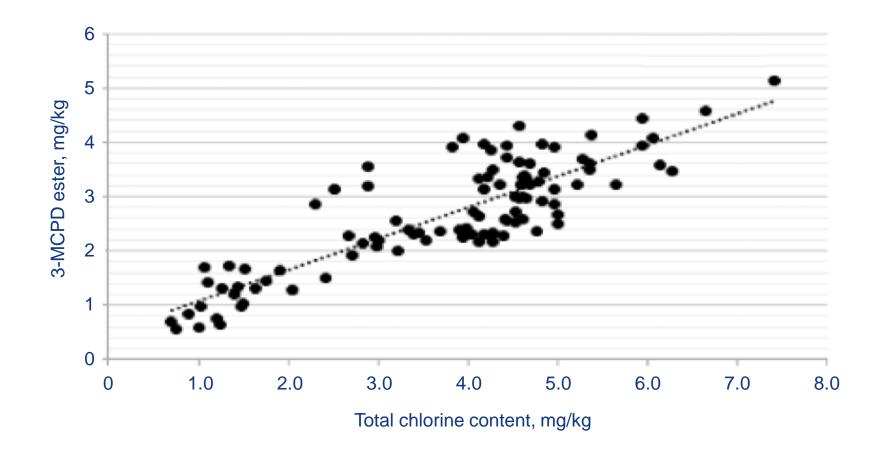
~LF~ \\\\\\\\\

- 3-MCPD and GE mitigations



- Where and how to reduce chloride content to minimize 3-MCPD formation?
- How to fit in 3-MCPD and GE mitigation into an existing site?
- How to choose between the available GE mitigation options?
- How to prepare for stricter regulations of the maximum content of these contaminants in the future?

09/12/2020 | © Alfa Laval 19 | www.alfalaval.com




# 3-MCPD mitigation

#### Does chloride have a direct effect on 3-MCPDE levels?



- Test conducted in refinery with different chloride levels



### Choosing the right mitigation method



- Which method is best for you?

#### Mitigation approaches



#### **Plantations**



 Reduce DAG in palm oil by ensuring milling within 48 hours – improve quality of crude palm oil



#### Mills

- Wash fresh palm fruit bunches to remove chlorine precursor
- Fresh palm fruit bunches sterilization with steam without chlorine
- Wash fresh crude palm oil with slightly alkaline water



#### Refineries

 Wash the crude palm oil as the refinery and minimize residence time and temperature during deodorization to the extent possible

09/12/2020 | © Alfa Laval 22 | www.alfalaval.com

### Malaysian Palm Oil Board Circular



- 30 October 2019

#### **Quality specifications for crude palm oil**

| Specification                               | Standard quality |
|---------------------------------------------|------------------|
| Free fatty acid (FFA) (as palmitic), % max. | 5.0              |
| Moistures and impurities (M&I), % max.      | 0.25             |
| DOBI, min.                                  | 2.31             |
| Chlorine (CI), max.                         | 2.0 ppm          |

Source: MPOB Circular No. 01/2019

#### Level of total chloride in palm oil products

| Sample         | Average (ppm) | Range<br>(ppm)     |
|----------------|---------------|--------------------|
| Crude palm oil | 7.293 ± 5.988 | 2.623 to<br>15.584 |

We have some gaps to cover

### Conventional Palm Oil Milling





09/12/2020 | © Alfa Laval 24 | www.alfalaval.com

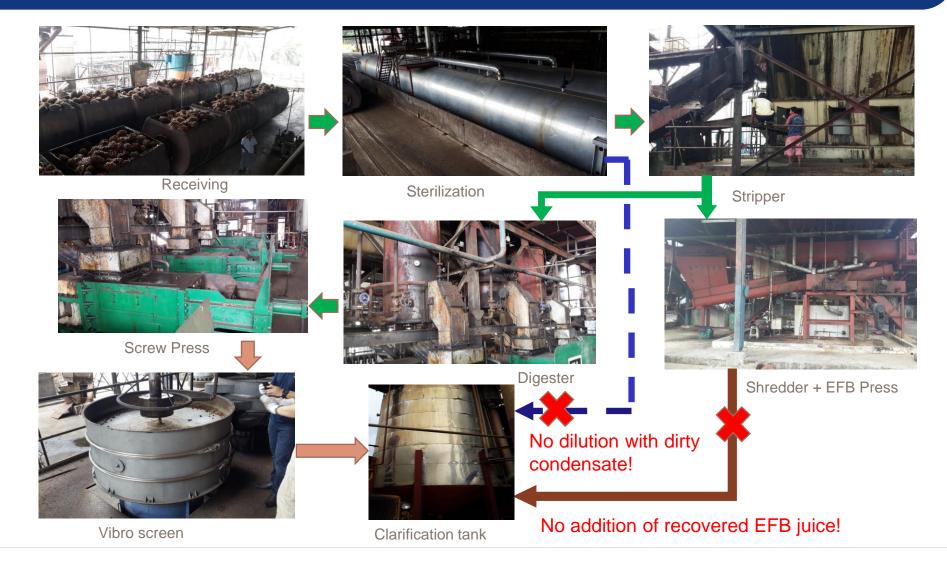
### Crude palm oil quality in different streams



- Premium crude palm oil specification vs. oil from recovered streams








| Quality                                     | Crude<br>palm oil | Condensate oil | Empty fruit bunch juice |
|---------------------------------------------|-------------------|----------------|-------------------------|
| Free fatty acids (%)                        | 3% max.           | 18.3–30.2%     | 14.4–21.8%              |
| Deterioration of Bleachability Index (DOBI) | 2.8 min.          | 0.95–1.04      | 1.05–1.67               |
| Chloride (ppm)                              | <2                | 41.7–53.8      | 20.5–41.7               |
| Phosphates (ppm)                            | <10               | 70.5–112       | 89–153                  |

09/12/2020 | © Alfa Laval 25 | www.alfalaval.com

### Conventional Palm Oil Milling





09/12/2020 | © Alfa Laval 26 | www.alfalaval.com

#### Proven crude palm oil washing track record



- Alfa Laval presence in the South-East Asian region

#### 34 crude palm oil washing systems sold since 2017

# Mill 300 tons per day

- IOI palm oil mill
- Unique palm oil mill
- Boustead palm oil mill
- IJM Edible Oils

## Mill 600 tons per day

- Sarawak Oil Palms
- Kim Loong
- Classic Segamat

#### Refinery 100–1000 tons per day

- PGEO Group
- Wilmar Group
- Sime Darby Group
- International Oil Group

#### Refinery 1000–3000 tons per day

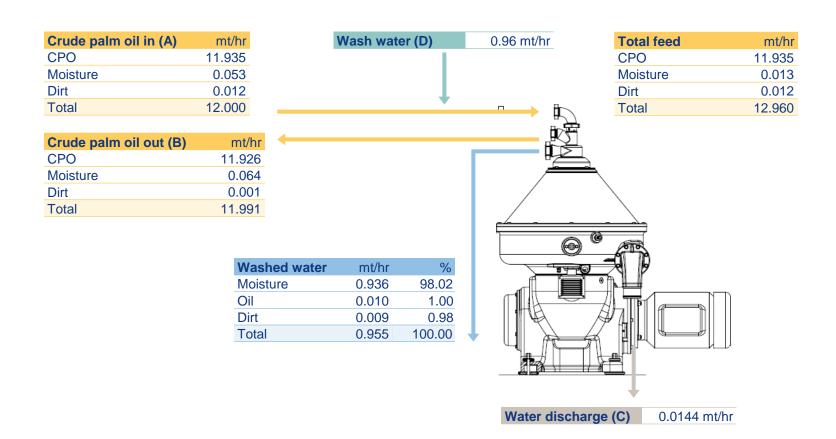
- International Oil Group
- Patum VegetableOil

09/12/2020 | © Alfa Laval 28 | www.alfalaval.com

### Up to 84% of chloride reduction post-washing



- Actual field results from a crude palm oil washing installation at a palm oil mill


| Sample date | CPO tota | l chloride | Percentage CI |               | Treated water total |    | Wastewater total |
|-------------|----------|------------|---------------|---------------|---------------------|----|------------------|
|             | Feed CPO | Washed CPO |               | reduction (%) | chloride (pp        | m) | chloride (ppm)   |
| 6/10/2018   | 5.952    | 0.626      |               | 89.48         | 8.576               |    | 93.562           |
| 11/10/2018  | 3.665    | 0.669      |               | 81.75         | 6.409               |    | 57.641           |
| 24/10/2018  | 4.260    | 0.408      |               | 90.42         | 7.497               |    | 80.459           |
| 27/10/2018  | 4.295    | 0.430      |               | 89.99         | 7.708               |    | 82.881           |
| 6/04/2019   | 11.298   | 2.252      |               | 80.07         | 6.333               |    | 56.836           |
| 20/05/2019  | 10.091   | 2.196      |               | 78.24         | 7.673               |    | 94.507           |
| 14/06/2019  | 6.317    | 1.021      |               | 83.84         | 7.683               |    | 53.664           |
| 15/06/2019  | 8.796    | 2.486      |               | 71.74         | 7.639               |    | 87.410           |
| 17/06/2019  | 11.857   | 1.183      |               | 90.02         | 9.313               |    | 67.748           |
| Average     | 7.392    | 1.252      |               | 83.95         | 7.648               |    | 74.968           |

3-MCPDE/PIPOC2019/CPO washing results

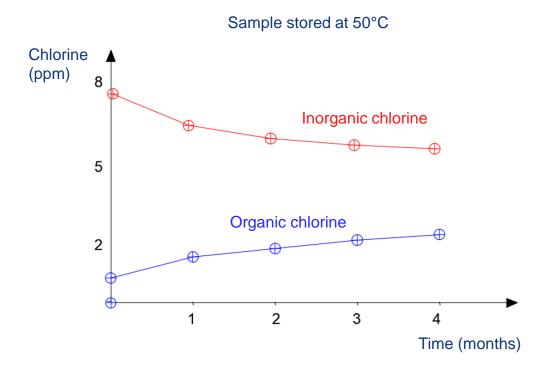
### Mass balance for crude palm oil washing



- Premium quality oil with low chloride content is the ultimate goal



Oil losses to fresh palm fruit: 0.0159%


Oil losses are expected, but negligible compared to overall mill losses

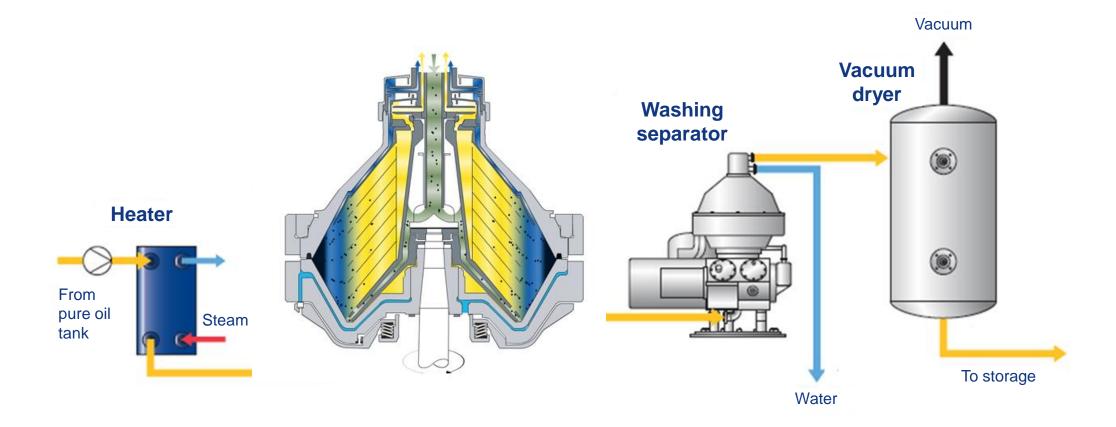
09/12/2020 | © Alfa Laval 30 | www.alfalaval.com

### Storage time impacts oil quality



- Longer storage time = higher organic chloride content and lower inorganic chloride content




**Time:** Consider the effect of long holding time and transit time on chloride formation

09/12/2020 | © Alfa Laval 31 | www.alfalaval.com

<sup>\*</sup> Study done by a refinery in Italy

### Simple, powerful and efficient CPO washing





09/12/2020 | © Alfa Laval 32 | www.alfalaval.com

#### Considerations: CPO washing for 3-MCPDE mitigation





#### **Mills**

- Early removal of chlorides most effective
- Overall lower utility cost
- Evaluate equipment maintenance cost (less cost if displacing existing purifiers)
- Easier for effluent handling
- Existing vacuum system can be used



#### Refineries

- Ability to receive crude palm oil from various sources
- Ability to handle high processing volume
- Centralized test equipment
- Easier access to skilled workers
- Need to install a new vacuum system

09/12/2020 | © Alfa Laval 33 | www.alfalaval.com



# **GE** mitigation

#### Glycidyl ester contributing factors



#### **Contributing factors**

- High diacylglycerides (DAG)
- High deodorizing temperature (>220°C)
- Long retention time in deodorizer
- Hydrolysis at high temperature with steam effect

|     | Deodorizing temperature |         |         |  |
|-----|-------------------------|---------|---------|--|
| DAG | 215°C                   | 225°C   | 250°C   |  |
| 3%  | 0.6–1.0                 | 2.2–3.5 | 3.0–7.5 |  |
| 5%  | 1.0–2.5                 | 1.5–4.0 | 6–10    |  |
| 7%  | 1.5–3.5                 | 2.5–5.0 | 9–15    |  |

Glycidyl ester (ppm) formed as function of DAG content and temperature.

09/12/2020 | © Alfa Laval 35 | www.alfalaval.com

#### Free fatty acid, monoglyceride and glycidyl ester



Light molecules

### Glycidol ester mitigation methods



| Method                                                                     | Comment                                                                                                                      |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Minimize formation in the deodorizer: limit temperature and residence time | Not sufficient to reach levels well below 0.5/1 ppm for palm oils or similar, especially for low colour product requirements |
| Re-refining with activated bleaching earth followed by mild deodorization  | Can reach 0.2–0.3 ppm, but post-refining has high OPEX and CAPEX and does not completely eliminate GEs                       |
| Direct stripping                                                           | Direct GE stripping can reach levels below 0.5 ppm subject to GE content in feed                                             |
| Alfa Laval ZeroGE™                                                         |                                                                                                                              |



09/12/2020 | © Alfa Laval 37 | www.alfalaval.com

#### Development of Alfa Laval deodorizing technology



- A commitment to continuous development



### Packed column refining

- Since 1985
- Bulk quality palm oil
- Low operating cost

### SoftColumn refining

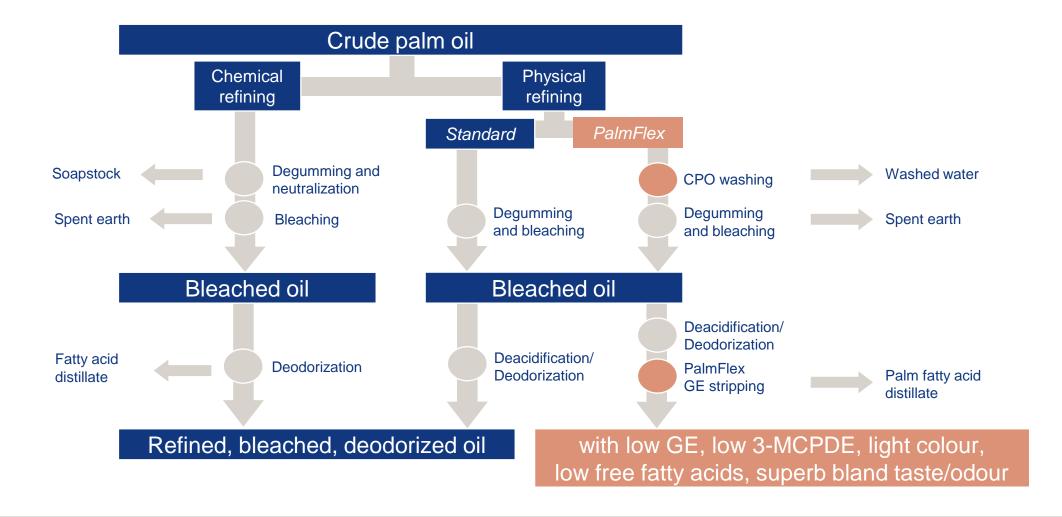
- Since 1996
- Seed or palm oils
- High quality oils
- Flexibility retention time
- Low operating cost

#### **Dual strip refining**

- Since 2009
- Flexibility in processing temperature
- With focus on low trans fat formation for seed oil
- Micronutrition and oil minor components removal

#### PalmFlex refining

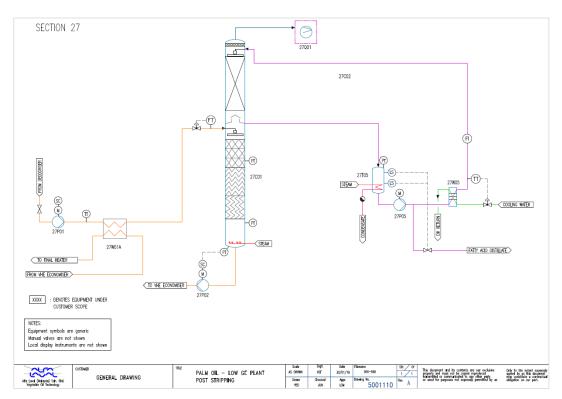
- Since 2018
- Low GE
- High quality palm oil
- Ability to use with low vacuum systems
- Flexibility in operation
- Low operating cost


#### Tray deodorizing

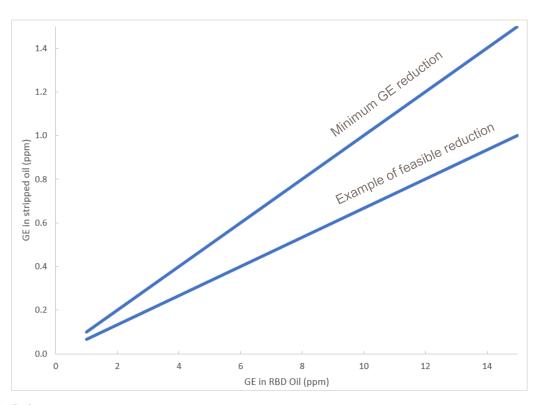
- 1960s~80s
- High steam consumption
- High operating cost

09/12/2020 | © Alfa Laval 38 | www.alfalaval.com

#### Alfa Laval PalmFlex – the optimum refining route







09/12/2020 | © Alfa Laval 39 | www.alfalaval.com

#### GE stripper designed specifically for GE removal





Performance based on commercial scale plant data and Alfa Laval's proprietary lipid property library and the process simulator PRO II from SimSci.



#### References

1 L. P. Cunico, R. Ceriani, B. Sarup, J. P. O'Connell, R. Gani, "Data, analysis and modeling of physical properties for process design of systems involving lipids", Fluid Phase Equilibria, 362, p 318ff (2014).

2 R. Ceriani, R. Gani, Y. A. Liu, "Prediction of vapor pressure and heats of vaporization of edible oil/fat compounds by group contribution". Fluid Phase Equilibria, 337, p 53ff (2012).

09/12/2020 | © Alfa Laval 40 | www.alfalaval.com

#### Great flexibility with Alfa Laval PalmFlex refining



1

Direct GE stripper with GE <0.5 ppm, low colour, low FFA, superb bland and odourless oil

No double refining needed

2

Bulk refining for low colour, low FFA, and superb bland and odourless oil

3

With high FFA feed, the plant can still operate at the rated capacity based on Palm Oil Refiners Association of Malaysia (PORAM) specifications

4

The plant can also operate above rated capacity with PORAM specifications

5

The plant can also operate at 70% turn-down without having a big impact on the per-ton cost



09/12/2020 | © Alfa Laval 41 | www.alfalaval.com

### Achieve the highest quality



- Optimal refined, bleached and deodorized (RBD) palm oil

| Quality of RBD Palm Oil                                     | Standard                 | PalmFlex                            |
|-------------------------------------------------------------|--------------------------|-------------------------------------|
| Free fatty acids (FFA)                                      | Max. 0.05%               | 0.03~0.04%                          |
| Moisture and volatile matter                                | Max. 0.05%               | Max. 0.03% (with refined oil dryer) |
| Colour (Lovibond 51/4" cell)                                | Max. 2.5 red / 25 yellow | Max. 2.0 red / 20 yellow            |
| Peroxide value                                              | 0                        | 0                                   |
| Taste / odour                                               | Bland / odourless        | Superb bland / odourless            |
| Palm fatty acid distillate purity (based on 5% FFA in feed) | Min. 89%                 | Min. 89%                            |
| 3-MCPDE                                                     | 4–6 ppm                  | < 1 ppm (with washing)              |
| Glycidyl esters (GE)                                        | 8–15 ppm                 | 0.3~0.5 ppm (with GE stripper)      |

Note: Final oil quality may vary subject to feedstock and process variation.

09/12/2020 | © Alfa Laval 42 | www.alfalaval.com

#### How PalmFlex meets large refinery expectations





- Consistent high-quality oil
- Continuous operation
- Flexibility in operating choices
- Low operating cost with high heat recovery
- Safe and easy operation
- Strong aftersales, service and support



# Summary of benefits

09/12/2020 | © Alfa Laval 44 | www.alfalaval.com

#### Alfa Laval in 3-MCPD and GE mitigation technology



- Summary of benefits



- Highly efficient chloride reduction at the mill and at the refinery with minimum oil losses
- Proven Alfa Laval PalmFlex refining technology delivers highest oil quality at low operating costs while meeting stringent food safety regulations

09/12/2020 | © Alfa Laval 45 | www.alfalaval.com



# Q&As

09/12/2020 | © Alfa Laval 46 | www.alfalaval.com

