IChemE Medals and Prize Winners 2021

<table>
<thead>
<tr>
<th>Medal</th>
<th>Winner</th>
<th>Winning paper/supporting information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambassador Prize</td>
<td>Professor Geoffrey Maitland FREng CEng CSci FIChemE</td>
<td>Well evidenced excellent contribution and impact.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greene Medal</td>
<td>Professor Michael Cloke CEng FIChemE</td>
<td>The contribution of Professor Cloke over 30 years has been immense in all three areas cited. An excellent candidate. Strong contribution to core membership function.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicklin Medal</td>
<td>Dr Fenwang Li</td>
<td>Dr Li, a candidate from Australia, is awarded the Nicklin Medal for outstanding work on catalysis and his patented it/nature paper. Impressive publication record and impact given that only three years passed since PhD. Important area of energy and catalysis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sharma Medal</td>
<td>Professor Paula Mendes CSci FIChemE</td>
<td>Very strong nomination, well evidenced impact in an important area. The nomination shows that Professor Mendes is an outstanding candidate for the Sharma Medal.</td>
</tr>
</tbody>
</table>

The Ambassador Prize is awarded to a volunteer who has made exceptional contributions, likely within an IChemE Special Interest Group, Members Group or as an ambassador for the Institution and/or profession more widely. This prize is typically awarded in recognition of a sustained period of work on a short to medium term project.

The Greene medal is awarded every year to an individual who has made a highly commendable long-term contribution to the progress of IChemE.

The Nicklin Medal is an early careers award and was introduced in 2014 to recognise talented chemical engineering researchers. Nominees must, at the time of the awards nomination deadline, have no more than five years postdoctoral research experience and should have produced international quality research outputs.

The medal is presented to an individual who has, across their career, made a significant contribution to the field of chemical engineering research. The judging committee will consider the following: originality and impact of research, innovation, professional standing, and other indicators of esteem indicated by the nominee/nominator.
<table>
<thead>
<tr>
<th>Medal</th>
<th>Winner</th>
<th>Winning paper/supporting information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davidson Medal</td>
<td>Dr William Herron CEng CSci FIChemE</td>
<td>Dr Herron has a life-long dedication to mentoring which must have had a significant impact on numerous individuals, as well as on his own organisation, and on other organisations.</td>
</tr>
<tr>
<td>Sargent Medal</td>
<td>Professor Rafiqul Gani FIChemE FAIChE</td>
<td>Professor Gani is an internationally recognized leader in process systems engineering (PSE) and sustainability. He has been a pioneer in chemical product design and process synthesis, thereby contributing to the sustainable development of the chemical industry. His seminal contributions in research and education, together with long track record of publication, collaboration, and leadership, have had a major impact in chemical engineering at large. An outstanding candidate who is highly deserving of the Sargent Medal.</td>
</tr>
<tr>
<td>Warner Prize</td>
<td>Dr Salvador Eslava AMIChemE</td>
<td>The panel unanimously recommend Dr Eslava for this year’s Warner Prize.</td>
</tr>
<tr>
<td>Underwood Medal</td>
<td>Professor Huanting Wang FRSC</td>
<td>The panel recommends Professor Wang of Monash University, Australia as the winner of the Underwood Medal. Professor Wang’s work, in the area of membrane separation, and nanomaterials has been sustained, scientifically pioneering, and has had significant industrial impact, within and beyond Australia. The research findings and inventions support provision of clean water and sustainable industrial development.</td>
</tr>
<tr>
<td>Medal</td>
<td>Winner</td>
<td>Winning paper/supporting information</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| **Senior Moulton Medal** | Dr John Pérez-Calderón
Centro de Investigación y Desarrollo en Criotecnología de Alimentos CIDCA (UNLP-CONICET-CIC), Argentina
Ms María Victoria Santos
Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) CONICET, Argentina
Dr Noemí Zaritzky
Universidad Nacional de La Plata, Argentina and Centro de Investigación y Desarrollo en Criotecnología de Alimentos CIDCA (UNLP-CONICET-CIC), Argentina | For their paper published in *Food and bioproducts Processing*, 2019, 118, 114–129.
A very nice example of classical chemical engineering applied to a complex food problem. In this case, the production of precooked frozen brussels sprouts. The paper brings together sophisticated modelling with challenging experimental work. It is well written and serves as a reminder of how the principles of heat transfer apply to a wide range of materials. |
| **Junior Moulton Medal** | Dr David Danaci
Imperial College London, UK
Dr Mai Bui
Imperial College London, UK
Dr Niall MacDowell
Imperial College London, UK | For their contribution to the paper published in *Molecular Systems Design and Engineering* 2020, 5, 212–231.
Exploring the limits of absorption-based CO2 capture using MOFs with PVSA – from molecular design to process economics. |
| **Junior Moulton Medal** | Mr Luke Forster
The University of Manchester, UK
Dr Carmine D'Agostino
The University of Manchester, UK
Mr Le Yu
The University of Manchester, UK | For their contribution to the paper published in *Molecular Systems Design and Engineering* 2020 5, 1193–1204.
Tailoring morphology of hierarchical catalysts for tuning pore diffusion behaviour: a rational guideline exploiting bench-top pulsed-field gradient (PFG) nuclear magnetic resonance (NMR). |
<table>
<thead>
<tr>
<th>Medal</th>
<th>Winner</th>
<th>Winning paper/supporting information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanson Medal</td>
<td>Anonymous</td>
<td>For their article, A Visible Career on the Spectrum.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This article, published anonymously, offers a personal experience of autism in the workplace. The article is well-referenced, grounded and has a solid framework. A lot of time and thought has clearly gone into the preparation of this article. A very deserving winner of the Hanson medal. The committee recognise and thank the author for sharing this experience.</td>
</tr>
<tr>
<td></td>
<td>Muhammad Raza University of Engineering & Technology, Lahore, Pakistan</td>
<td>This interesting safety-related paper, looking at operator change, was well-liked by the committee. It features a solid theoretical background, sophisticated analysis, and interpretation, and is well-presented. The paper has the potential to be shared and discussed widely as it has clear real-world use. The committee were happy to award the Hutchison Medal to this paper.</td>
</tr>
<tr>
<td></td>
<td>Saima Ghazal University of Engineering & Technology, Lahore, Pakistan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saeed Salehi University of Oklahoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ziho Kang University of Oklahoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catalin Teodoriu University of Oklahoma</td>
<td></td>
</tr>
<tr>
<td>Clean Energy Medal</td>
<td>Professor Yulong Ding CEng FIChemE</td>
<td>Committee unanimously agreed that award of the Clean Energy Medal goes to Professor Ding. Clear contribution over many years, excellent academic research, and excellent commercialisation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medal</td>
<td>Winner</td>
<td>Winning paper/supporting information</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Franklin Medal</td>
<td>Dr Phillip Carson MIChemE</td>
<td>Dr Carson is recommended as the winner of the Franklin Medal, having made a long-term voluntary contribution to the Loss Prevention Bulletin (LPB) as an author and panel member. The nomination provided plentiful evidence of a volume of good quality articles in LPB covering diverse industry sectors and spanning 35 years. LPB is a highly respected and used publication within and beyond chemical engineering.</td>
</tr>
<tr>
<td>Lees Medal</td>
<td>Mr Michael Rantell CEng MIChemE</td>
<td>Michael Rantell is recommended as the winner of the Lees Medal. His article ‘Historical runaway reaction case study (January 1992)’ (Loss Prevention Bulletin 273 June 2020) provides a clear description, with clear graphics and analysis, of a runaway reaction and loss of containment incident in a batch process for synthesis of chemical intermediates for pharmaceutical products. The article includes a useful description of, and signpost to, reaction thermal hazard assessment best practice. The article strikes a good balance between self-examination, openness, and forward-looking discussion. The experience described (which we all hope to avoid) is laid out clearly and sensitively, and good practical advice is provided at the end.</td>
</tr>
<tr>
<td>Donald Medal</td>
<td>Professor Gary Lye CEng CSci FIChemE</td>
<td>Committee unanimously agreed that the Donald Medal is awarded to Professor Gary Lye.</td>
</tr>
<tr>
<td>Morton Medal</td>
<td>Professor Nicky Eshtiaghi</td>
<td>We recommend unanimously that the award be given to Professor Nicky Eshtiaghi for her outstanding efforts in creating creative, adaptive, and inclusive learning approaches that enable diverse chemical engineering students to become successful learners and develop into ethical professionals. This has included use of educational technology as well as engagement of industry. We note the impact her work has generated within her own University as well as her national recognition within Australia and within IChemE.</td>
</tr>
<tr>
<td>Medal</td>
<td>Winner</td>
<td>Winning paper/supporting information</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Geldart Medal</td>
<td>Professor John Grace
OC CEng MIChemE</td>
<td>Unanimously recommending Professor John Grace to be awarded the Geldart Medal. Top scores by all judges. We have a unique and gigantic star amongst the nominations, having been nominated by eight international leaders. This is truly exceptional. He is a great leader in the field that will set an excellent example of prestige for the Geldart Medal.</td>
</tr>
<tr>
<td>Guggenheim Medal</td>
<td>Dr Carolyn A Koh</td>
<td>The committee unanimously agreed that this year’s winner of the Guggenheim Medal in all categories is Dr Carolyn A Koh.</td>
</tr>
</tbody>
</table>

The medal will be awarded to an individual who has made a significant recent contribution to research in particle technology. This will be recognised through scientific advancements widely acknowledged within the community and high impact findings recognised outside the particle technology community.

The medal is awarded to an individual who has made a significant recent contribution to research in thermodynamics and/or complex fluids. The contribution could encompass, but need not be limited to, new experimental techniques for the study of complex fluids at the molecular, mesoscopic, or macroscopic scale, new theoretical or computational developments for the calculation of thermodynamic properties, and/or developments of new complex fluids of potential interest for technological processes and applications.