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Abstract: Various techniques have been put forth to analyse blowout preventer (BOP) reliability such as the Petri-
net and Markov methods. However, these methods suffer from the drawback of being unable to update the 

reliability assessment when the failure data is available for the system. This study uses a model based on fault 

tree analysis and dynamic Bayesian network (DBN) that relates the failure probability of each component to the 
failure probability of BOP system and provides an optimized preventive maintenance schedule with minimum 

maintenance cost. The BOP stack are considered as a series-parallel system with subsystems. The different 

components of the BOP stack are assumed to follow a constant failure rate. When the reliability of the system 
falls below a specified threshold level, the involved component(s) is repaired such that the maintenance cost for 

the overall time-period under consideration is minimized. The downtime associated with BOP maintenance has 

been incorporated in the objective function of overall cost to prevent frequent removal of subsea BOP system 

which can lead to high downtime, increased maintenance costs and low productivity.  
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Introduction 

Need for BOP reliability from the perspective of safety and economics 

Incidents such as the Deepwater Horizon explosion of 2010, in which poor maintenance of the blowout preventer was one of 

the causes that lead to 11 fatalities, illustrate the need for a well-designed maintenance schedule based on risk and reliability 

analysis (Barstow, 2010). A blowout is one of the most catastrophic incidents that can occur in offshore systems because of 

the extremely high consequence associated with them. Apart from potentially high consequences, likelihood of a blowout 

occurring in wells operating under high temperature, high pressure (HTHP) conditions is as high as 1.9 x 10-3 per year 

(SINTEF, 2013), This ultimately leads to high risk associated with wells operating under HTHP conditions. A subsea blowout 

preventer (BOP) stack is used to seal, control and monitor oil and gas wells, thus preventing blowout incidents and therefore 

proper maintenance of BOP stack is essential from the perspective of safety. Table 1 shows some of the major blowout 

incidents and near misses (Vinnem, 2014): 

Location Incidents 

UK Ocean Odyssey,1989 

Norway Ekofisk B, 1977 

West Vanguard, 1985 

Snorre A, 2004 

Gullfaks C, 2010 

Brazil Enchova, 1984 

Frade, 2011 

South China Sea Seacrest, 1989 

US Ixtoc, 1979 

Macondo, 2010 

Table 1: Blowout incidents and near misses 

Apart from the perspective of keeping the risk associated with an offshore platform below the required standards, BOPs also 

play a significant role in the profitability associated with offshore drilling platforms. BOP maintenance requires pulling the 

entire BOP stack on the surface of the offshore platform and the maintenance downtime associated with this activity usually 

is within a range of 1-2 weeks (Draegebo, 2014). Therefore, BOP maintenance is regarded as one of the most expensive 

downtime events for an offshore platform (Shanks, 2003). It is observed that around 2% of offshore rig operational time is lost 

due to BOP failures (Holand, 1987). 
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Previous work 

BOP reliability has always been an area of focus in offshore industry research. Different methods have been utilized for 

assessing BOP reliability. However, each method has its own advantages and disadvantages. Simpler methods like Fault tree 

analysis have been successfully implemented to analyse BOP reliability (Holand, 1997). Similarly, the Markov method has 

been proven to be instrumental in analysing the performance of subsea BOP systems and the effect of stack configuration of 

BOP and mount type from the perspective of BOP reliability (B. Cai, 2012). The relatively complex stochastic petri-net method 

has also been applied for evaluation of reliability of subsea BOP systems along with the associated system availability (B. Cai, 

2012). Dynamic Bayesian networks have been proved to be effective to evaluate real time reliability of BOP and its associated 

components (B. Cai, 2015). Dynamic Bayesian networks have been observed to be superior to other methods in the aspect of 

their ability to update the reliability assessment when failure data is available for the system. Therefore, a dynamic Bayesian 

network is implemented in this study for BOP reliability evaluation. 

BOP stack configuration 

BOP stack configurations vary based on the requirements of the offshore rig. The BOP configuration used in this study can be 

referred to as a conventional stack configuration (Z. Liu, 2015). The conventional BOP stack system consists of 2 upper annular 

BOPs, 1Lower Marine Riser Package (LMRP) connector,1 blind shear ram BOP, 3 pipe ram BOP and 1 wellhead connector. 

The 2 upper annular BOPs and 3 pipe ram BOPs are in parallel configuration, the annular BOP parallel system, LMRP 

connector, blind shear ram BOP, pipe ram BOP parallel system and wellhead connector are in series configuration with respect 

to reliability. The BOP stack can be represented by Figure 1: 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: BOP stack configuration 
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Optimization algorithm 

This study utilizes an optimization algorithm that provides a predictive maintenance plan using dynamic Bayesian network 

(Demet Özgür-Ünlüakin, 2006). The algorithm model is reduced to decrease computational time for the used optimization 

platform (General Algebraic Modelling System/GAMS). The inputs to the algorithm are the failure rates of BOP stack 

components, the cost of maintenance and the associated downtime of BOP components and the configuration of the BOP 

stack. The components are replaced in an optimized manner such that the reliability of the BOP stack system does not fall 

below a required threshold reliability value, while simultaneously minimizing the overall maintenance cost. The algorithm is 

described as follows: 

Objective function: 

𝑍 = 𝑚𝑖𝑛(∑ ∑ 𝑐𝑖,𝑡 ∗ 𝑥𝑖,𝑡 ∗ 𝑗𝑖
𝑛
𝑖=1

𝑇
𝑡=1 + ∑ 𝑑𝑡 ∗𝑇

𝑡=1 𝑦𝑡)   

subject to the following constraints: 

𝑅𝑖,𝑡 ≤ 𝑒− 𝜆𝑖𝑅𝑖,𝑡−1 + 𝑥𝑖,𝑡𝑀  ∀ 𝑖, 𝑡  

𝑅𝑖,𝑡 ≥ 𝑒−𝜆𝑖𝑅𝑖,𝑡−1 − 𝑥𝑖,𝑡𝑀  ∀ 𝑖, 𝑡  

𝑅𝑖,𝑡 ≤ 1 + (1 − 𝑥𝑖,𝑡)𝑀  ∀ 𝑖, 𝑡   

𝑅𝑖,𝑡 ≥ 1 − (1 − 𝑥𝑖,𝑡)𝑀  ∀ 𝑖, 𝑡  

𝑅𝑝,𝑖,𝑡 =  1 − (1 − 𝑅𝑖,𝑡)
𝑚𝑖

  ∀ 𝑖, 𝑡   

𝑅𝑠,𝑡 = ∏ 𝑅𝑝,𝑖,𝑡
𝑛

𝑖=1
  ∀ 𝑡  

 𝑦𝑡 − 𝑥𝑖,𝑡 ≥ 0  ∀ 𝑖, 𝑡  

𝑅𝑙𝑜𝑤 ≤ 𝑅𝑖,𝑡 ≤ 1  ∀ 𝑖, 𝑡       

𝑥𝑖,𝑡 ∈ {0,1}  ∀ 𝑖, 𝑡 &  𝑦𝑡 ∈ {0,1}  ∀ 𝑡     

𝑐𝑖,𝑡 =  𝑐𝑖,0 ∗ (1.0035)𝑚−1  

The model sets are defined as follows: 

i: Index of component 

t: Time-period step (weeks) 

𝑗𝑖: Number of parallel components of component i 

 

The model parameters are defined as follows: 

𝑚𝑖: Number of parallel components of component i 

M: Big M formulation constant; M=1+Rlow 

𝑐𝑖,𝑡: Cost of maintenance for component i at time t 

dt: Cost of downtime at time t 

𝜆𝑖: Failure rate of component i 

 

The model variables are defined as follows: 

𝑅𝑖,𝑡: Reliability of component, i, at time t 

Rp,i,t: Reliability of parallel subsystem of component i at time t 

Rs,t: Reliability of BOP stack system at time t 

Rlow: Minimum reliability threshold of BOP stack system 

xi,t: Binary variable used to determine which, if any, component i is maintained at time t 

yt: Binary variable used to determine if downtime occurs at time t 
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The following assumptions are made in the described algorithm: 

• Overall reliability of the BOP stack system should be kept above a minimum threshold 

• Components age at a constant rate (component reliability decreases exponentially) 

• It is possible to replace components at any time 

• Maintenance restores components fully 

• Each component has an exponential failure rate 

• All components will either fail or work perfectly 

• Components will be replaced on time by the beginning of the next period 

• All maintenance causes downtime of one time-period 

 

Required Data for BOP stack 

The described algorithm requires the failure rates of components present in the stack. Different databases providing failure 

rates for BOP stack components are have been put forth. The following failure rates are used for reliability assessment of BOP 

( American Bureau of Shipping and ABSG Consulting Inc. , 2013): 

Component Mean time to failure (hrs) 

LMRP connector 76,698 

Upper annular ram 40,083 

Shear ram 61,358 

Pipe ram 40,035 

Well head connector 76,698 

Table 2: failure rate data of BOP stack components 

 

Apart from failure rate data, the model required the cost of replacing the BOP components and the associated downtime cost 

during the maintenance of that BOP component. Since, the focus of this study is to provide a methodology for maintenance 

scheduling of BOP stack based on dynamic Bayesian network, a representative set of cost values have been used. An initial 

downtime cost of $ 25,000 has been assumed uniformly for all the BOP components. The cost of maintenance is assumed to 

increase according to a compounding interest formula with 0.35% interest per week. The following are the cost of maintenance 

of the BOP components used in this study: 

Component Cost ($) 

LMRP connector 7,000 

Upper annular ram 25,000 

Shear ram 20,000 

Pipe ram 20,000 

Well head connector 7,000 

Table 3: Initial cost of maintenance of BOP stack components 

 

Results and discussion 

As discussed previously, General Algebraic Modelling System (GAMS) has been used to solve the Mixed Integer Nonlinear 

Programming problem (MINLP) formulated by the described algorithm. To verify the obtained results from the optimization 

platform, BARON solvers was utilized. It was observed that, the computational time increased rapidly with an increase in 

minimum reliability threshold for the system. 
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The following maintenance schedule (Table 4) was obtained by the described algorithm for a time-period step (t) of 1 week 

for different minimum reliability thresholds (𝐑𝐥𝐨𝐰) for an overall period of 12 months: 

Rlow Rlow Rlow Rlow 

0.675 0.700 0.725 0.750 

t 

(weeks) 

Component to 

be replaced 

t 

(weeks) 

Component to 

be replaced 

t 

(weeks) 

Component to 

be replaced 

t 

(weeks) 

Component to 

be replaced 

12 
LMRP 

connector 
29 

LMRP 

connector 
23 

LMRP 

connector 
31 

LMRP 

connector 

    Well head 
connector 

Well head 
connector 

 

 

Rlow Rlow Rlow Rlow 

0.775 0.800 0.825 0.850 

t 

(weeks) 

Component to 

be replaced 

t 

(weeks) 

Component to 

be replaced 

t 

(weeks) 

Component to 

be replaced 

t 

(weeks) 

Component to 

be replaced 

34 

LMRP 

connector 

29 

LMRP 

connector 

19 

Upper annular 

ram 22 
Shear ram 

Shear ram Shear ram Shear ram Pipe ram 

  Well head 

connector 
Pipe ram 

29 

LMRP 

connector 

    

35 

LMRP 

connector 
Shear ram 

    Well head 

connector 

37 

Upper annular 

ram 

      LMRP 

connector 

      Well head 

connector 

 

Table 4: Maintenance schedule of BOP stack 

 

It is observed that as the minimum reliability threshold decreases, the number of maintenance jobs required decreases. Many 

of the maintenance jobs that are scheduled at the same time-period to minimize the associated downtime cost.  

Apart from maintenance scheduling, the described algorithm can serve as an effective tool for risk-benefit analysis for the 

required problem of BOP stack maintenance. This effectiveness can be derived by plotting the overall maintenance cost 

including downtime (objective function) versus the minimum reliability threshold dictated for the BOP stack. The graph 

obtained (pareto-optimality curve) is as follows: 
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Figure 2: Overall cost vs Minimum reliability threshold 

 

The cost appears to vary exponentially with the minimum reliability threshold, which may be because the reliability decreases 

exponentially with respect to time, and maintaining the reliability above a certain point thus requires an exponential increase 

in maintenance efforts.  

 

Conclusion 

An optimization model has been developed for maintenance scheduling of BOP stack that can minimize the overall cost 

associated with BOP maintenance (including maintenance downtime) while simultaneously maintaining the reliability above 

a required threshold. The model has the capability to consider the subsequent increase in cost of maintenance with respect to 

time to accurately predict the time-period that requires maintenance, the described model can thus be further improved by 

incorporating the increase in cost of maintenance as a function of the decrease in the reliability of the BOP component.  Also, 

the model can be effectively utilized for carrying out a risk benefit analysis for the BOP maintenance problem. The problem 

can be further extended by determining the minimum reliability threshold required to maintain the risk below the required 

standards by carrying out a detailed risk assessment for the offshore rig. This will be effective in preventing overspending or 

underspending on BOP stack maintenance.  
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