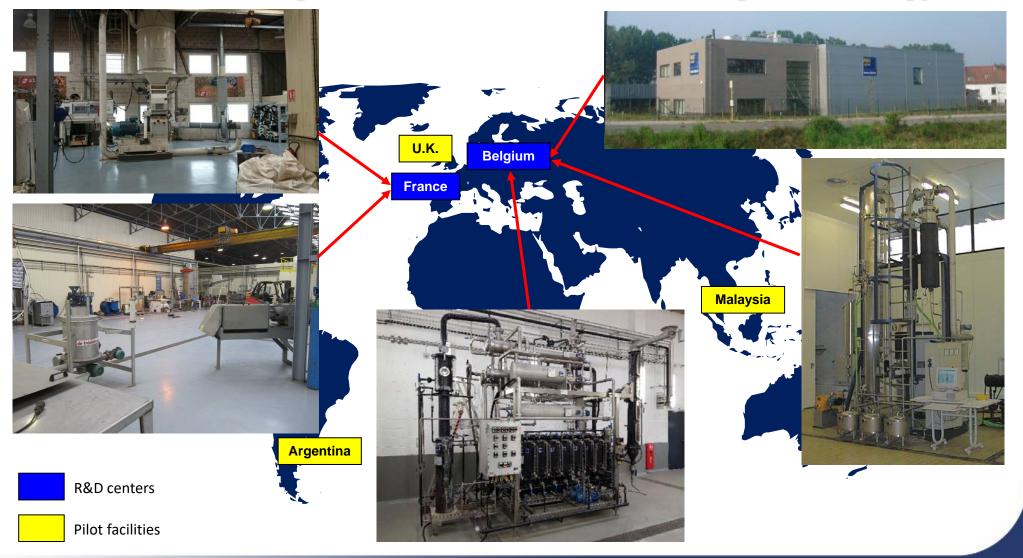


Mitigating Process Contaminants during Palm Oil Refining: How to Prevent the Formation of GE and How to Eliminate GE Once Formed

> <u>Chia</u> Ing Chuk Technical Manager Desmet Ballestra Malaysia

desmet ballestra


World Leading Specialist in Oils, Fats & Oleochemicals

Global Coverage: Efficient Customer Service

Innovation through R&D: Backbone of Leading Technology

Challenge for Food Oils: 3-MCPD and Glycidyl Esters

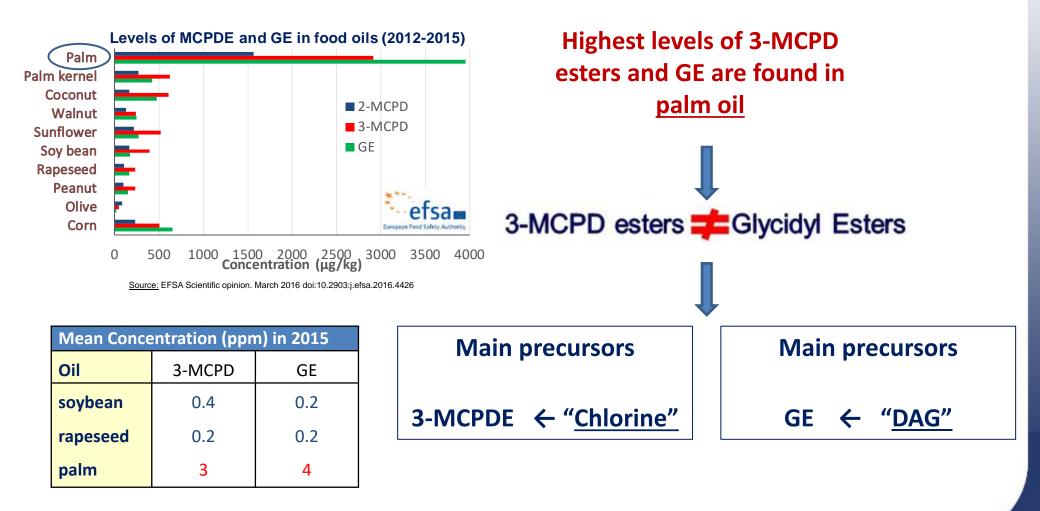
3-MCPD		2-MCPD		Glycidyl esters	
Monoesters	diesters	monoesters	diesters		
СН ₂ —О—СОР СН—ОН СН ₂ — <mark>С</mark>	CH2-O-COR1 CH-O-COR2	CH2-O-COR I CH-CI	CH2 [—] O—COR1 I CH— <mark>CI</mark>	CH2-COR	
СН ₂ —ОН 	ĊH ₂ —CI	ĊH₂—OH	ĊH ₂ -O-COR ₂	CH2	
ĊH—O—COR CH₂— <mark>C</mark> I	Source: Pudel,F. and Ma	thäus,B. (2012) - AOCS conference, Long B	Beach, CA,USA		

- * Occurrence in food oils first reported mid of 2000's
- * Were considered as potential harmful contaminant
- * Oil processing industry was requested to reduce 3-MCPD/GE in refined food oils
- * Efficient mitigation strategies were developed and are industrially applied

Limits for GE and 3-MCPD

EU Regulatory Limits				
	3-MCPD	GE		
Vegetable oils (incl. palm)	2.5	1.0		
Vegetable oils (for use in infant food)	0.75	0.5		

GE/3-MCPD esters are mainly issue for palm oil

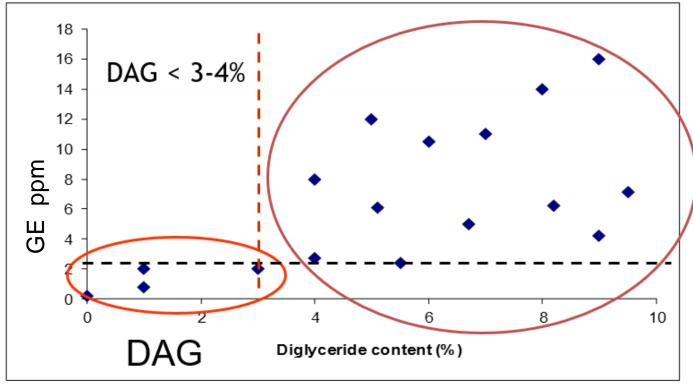

Oil	Glycidyl (ppm)	3-MCPD (ppm)	DAG (%)
Rapeseed	0.12	0.21	0.40
Sunflower	0.30	0.54	0.65
Coconut	0.25	0.54	N.A.
Corn	0.54	0.68	2.12
Soya	0.35	0.55	0.40
Palm	1.03-7.5	0.15-13.7	4-10

Analysis of commercial oils (purchased in supermarket – 2016)

(1) Palm Oil is most sensitive oil for 3-MCPD/GE formation

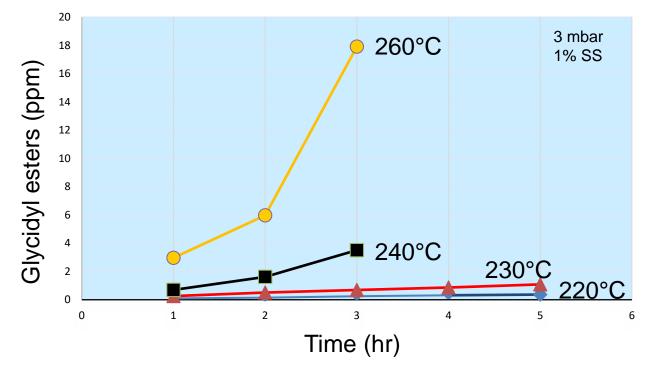
- (2) GE content in refined soft oils is generally very low (< 0.5 ppm)
- (3) 3-MCPD content can also be high(er) in soft oils (quality dependent)

3-MCPD & GE: High Levels in Palm Oil



3-MCPD Esters **Glycidyl Esters**

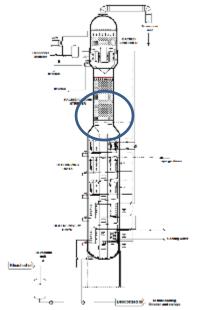
	3-MCPD	GLYCIDYL (GE)
Toxicity	Carcinogenic (Non-genotoxic)	Carcinogenic (Genotoxic)
Precursors	Triglycerides, chlorine Acidic conditions	Diglycerides Heat
Mechanism of formation	Nucleophilic substitution (starting at 140°C)	Radicalar reaction (> 230°C)
Critical refining stage (for minimal formation)	Degumming - Bleaching (but formed during 1st stage of deodorization)	Deodorization
Stability	Can only be degraded with strong alkaline Not volatile	Conversion to MAG with strong acid (BE) Volatile


Different mitigation strategies for 3-MCPD esters and GE

Low DAG in CPO – Low GE

Palm Oil, deodorized at 260°C

GE Formation: Effect of Time and Temperature

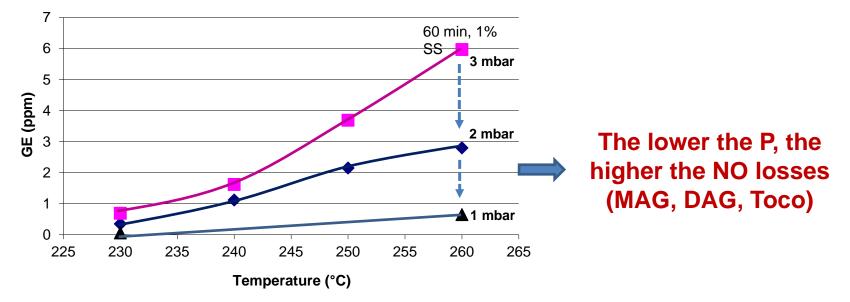

Net GE formation at 260°C : \approx 8 ppm/hr (= \approx 0.13 ppm/min.) Net GE formation at 220°C : \approx < 0.1 ppm/hr

- Almost no <u>net</u> formation of Glycidyl esters at T < 230°C.
- Very fast formation at T > 240°C.

GE Formation: Effect of Packed FFA Stripping Column

Temperature (°C)		GE (ppm)	Color (R – 5,25")	FFA (% C16:0)
220		0.10	20	0.12
230		0.14	19	0,09
240		0.17	14	0,07
260	,	0.20	12	0,04

10 min, 0.5% SS

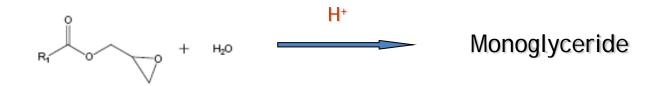


Short residence time at high(er) temperature gives:

- Almost no formation of glycidyl esters, even at T > 240°C
- Very efficient FFA stripping but only limited heat bleaching

Dual temp high temp fast stripping / low temp mild deodorisation

Can GE be Stripped During Deodorization ?



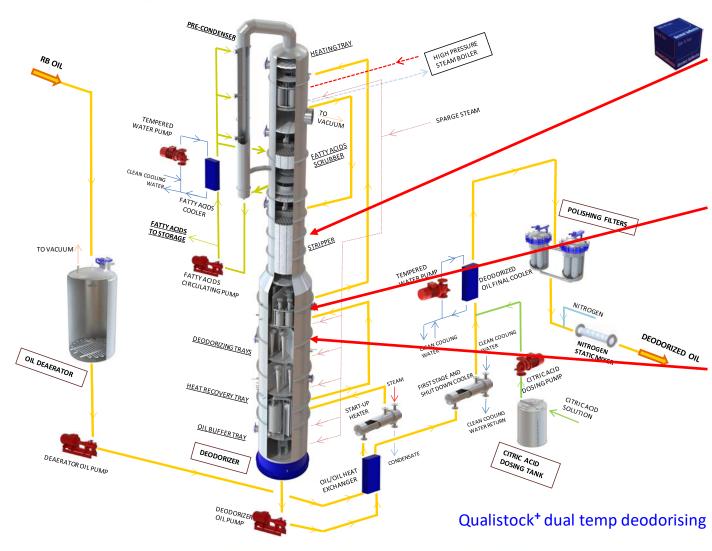
Glycidyl esters can be stripped from the oil, but.....

- Stripping will only be significant at higher temperature/lower pressure
- Under 'normal' deodorizing conditions: formation > stripping
- Best strategy is therefore to limit formation (temp. < 240°C)
- Best compromise: strip at high T (250-260°C), deodorise at low T (230-240°C)

Glycidyl Esters can be 'removed' from Refined Oil

Acid catalysed conversion to Monoglycerides

* To be applied on fully refined (deodorized) oil


* Post-bleaching with acid activated BE followed by mild deodorization

* No effect on 3-MCPD esters

Double refining with higher operating cost but very efficient approach to get GE << 0.5 ppm in RBD Palm Oil (Fractions)

Current Strategies for GE Mitigation

GE Mitigation 1: Qualistock+[™] Dual Temperature Deodorisation

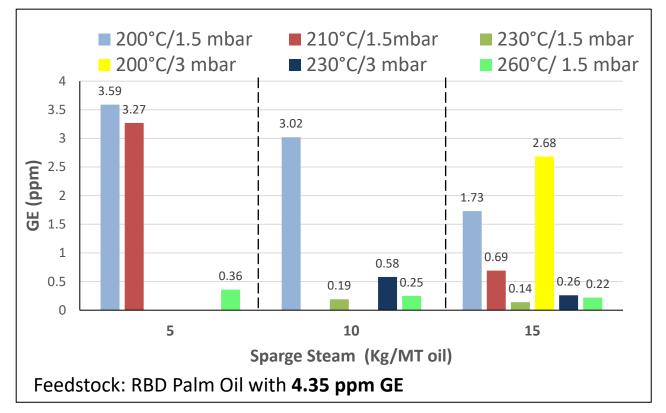
Integrated Packed column stripper

- Short residence time
- High temperature FFA stripping

Dual Temp Deodorization

 Packed column stripper followed heat recovery to lower temperature

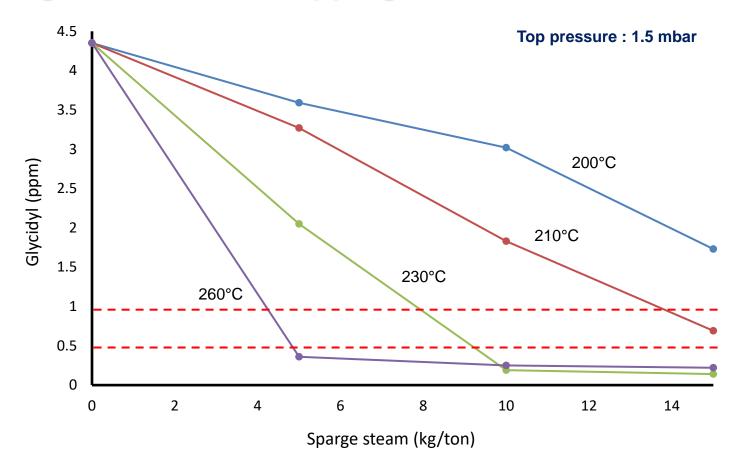
Tray type deodorizer


- Longer residence time
- Lower temperature
- Heat bleaching/ deodorization

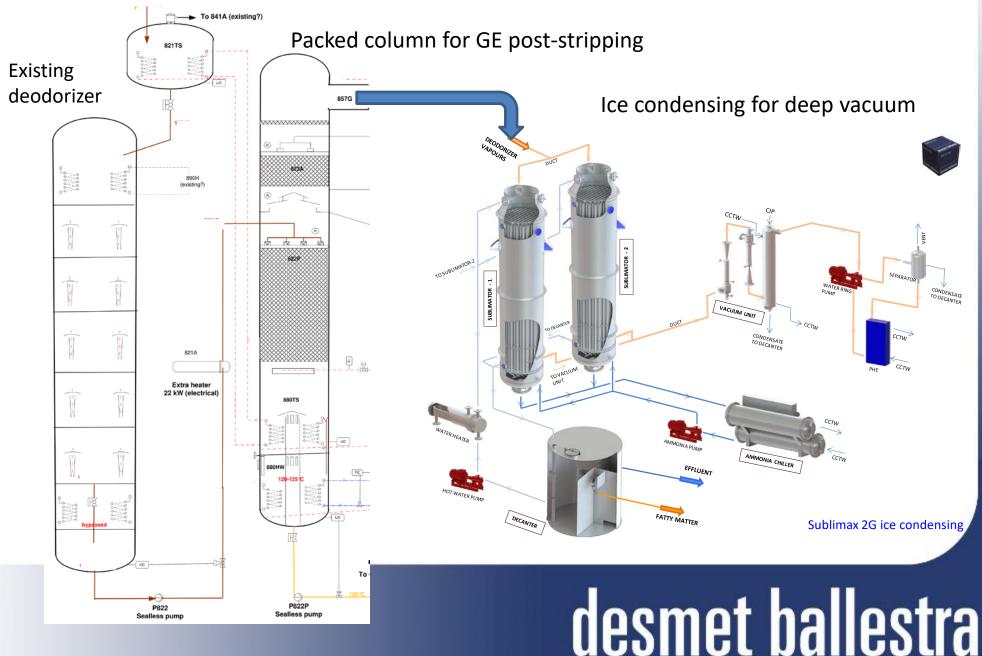
GE Mitigation 1: Qualistock+[™] Dual Temperature Deodorisation

		Single Temperature	Dual Temperature
Temperature	°C	265	230 – 215
Sparging Steam	%	0.6	1.2
Deodorising Retention Time	mins	60	120
FFA	%	0.06	0.04
Colour	R	2.3	2.3
GE	ppm	4.81	0.36

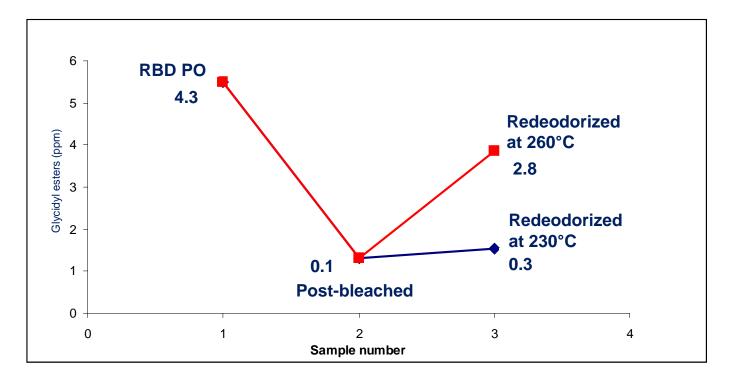
Industrial Data


GE Mitigation 2: Stripping of GE from Refined Palm Oil

- Not enough GE Stripping at 200 °C
- More than 95% of the GE can be stripped when using proper stripping conditions


Level of vacuum will have big impact on GE Stripping

GE Mitigation 2: Post Stripping



GE Post-stripping will not only reduce GE, but will also create additional **losses** as other components will also be stripped (Toco, MAG, ...)

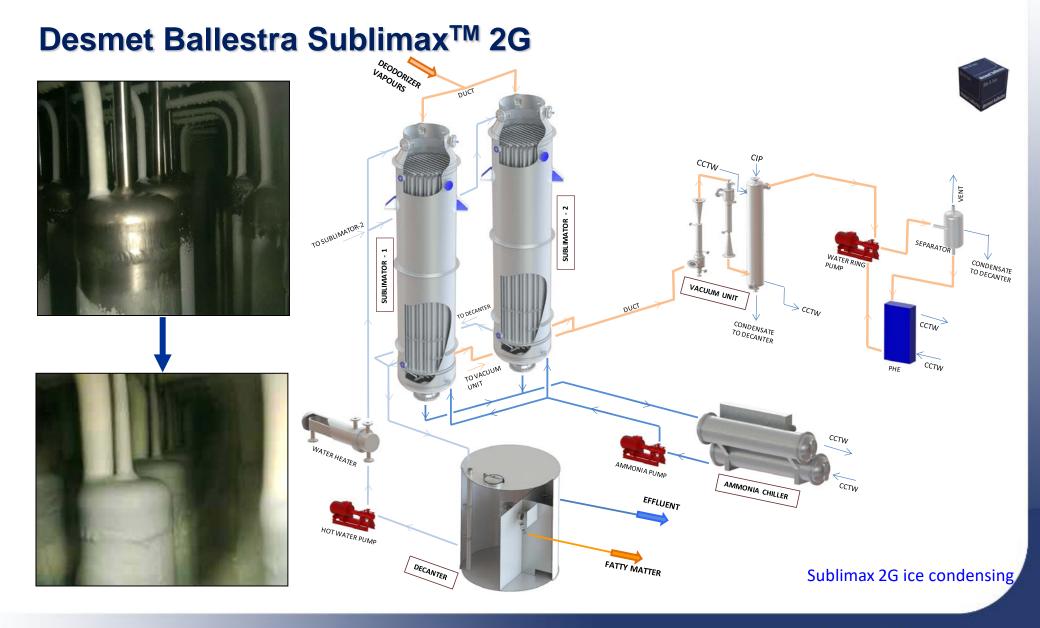
Stripping of GE from Refined Oil

GE Mitigation 3: Mild Post Refining

Post-bleaching : 0.5% Activated BE, 110°C, 30 min.

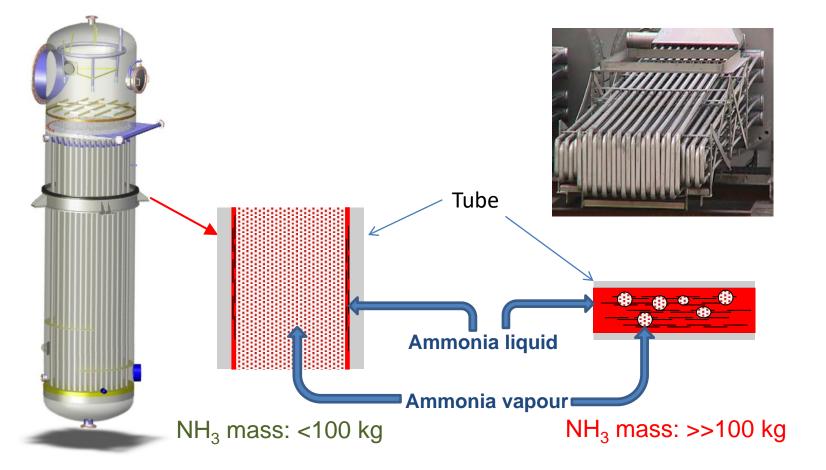
Post-deodo : 0.5% stripping steam, 3 mbar, 60 min.

Attention! GE may again be formed during post-deodorization

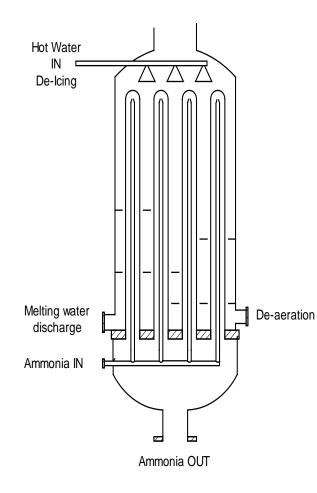

Iow deodorization temperature required

GE Mitigation 3: Mild Post Refining

		RBDPO (Feed)	2 nd Bleached PO	2 nd Deodorised PO
Phosphoric Acid	%	-	0.05	-
Dosage				
Bleaching Earth	%	-	1 – 1.3*	-
Temperature	°C	-	105	210
Retention Time	mins	-	30	30
Sparging Steam	%	-	0.3	0.45
FFA	%	0.06 - 0.08	-	0.02 - 0.03
Colour	R	2.9	-	2.1 – 2.5
GE	ppm	8	Not Detectable	0.15 - 0.40

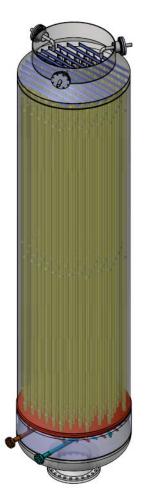

* BE dosage of 1.3% was mainly due to colour reasons. Required consumption for breaking down GE is lower.

Industrial Data



24

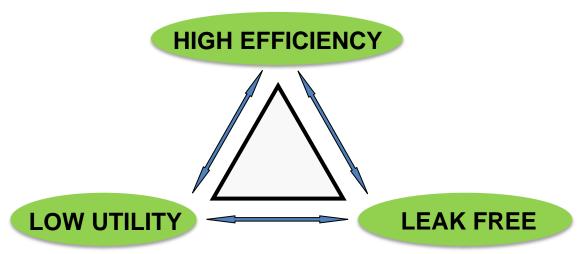
Sublimax: Vertical, with Falling film ammonia evaporation Classical: Horizontal, with convective boiling liquid tubes



Main Advantages

- Effective heat transfer with falling film evaporation
- Low ammonia hold up in system
- Reduced heat loss during melting
- Reduced chiller peak load and electricity consumption
- Reduced motive steam and cooling water consumption for deaeration group
- Efficient cleaning with hot water spraying
- Self draining of refrigerant and melted ice
- Minimal welding joints
- Free vertical expansion of tubes

	Desmet Ballestra	Conventional
Suction Pressure (mbara)	2.0	2.0
Suction Temperature (°C)	8	8
Water Vapour (kg/h)	300	300
Air (kg/h)	8	8
FFA (kg/h)	5	5
Chiller Power (kW)	140	180
Steam Eq. for Melting (kg/h)	100	110
Motive Steam (kg/h)	133	180
Cooling Water (m3/h)	108	154


Freezing times Energy consumption Drainage NH₃ Ice removal tubes Ammonia leakage risk Mass NH₃

Sublimax®

Long Minimal, stable Gravity Effective Negligible Very low

Horizontal

Short Higher, with peaks None Poor Yes High

Final Conclusion

No « one fits all" 3-MCPD/GE mitigation solution

Best solution will depend on

(1) Plant configuration : chemical or physical , new or existing plant
(2) Required specs : special vs commodity; individual or formulated fat (CIE)
(3) Technology development (efficiency – quality – sustainability)

New technical solutions (preventive and curative) are further explored and developed taking into account COST factor final oil must remain affordable

<u>Reference</u> : De Greyt W. and Kellens M., 3-MCPD and GE : A new Challenge Oils and Fats International , 32(7) - 2016

Technological Breakthrough with Continuous R&D

MOSTA Event: Glycidyl Ester Development: Holding Glycidyl Ester (GE) in Check

Thank You for Your Attention

InchukC@desmetballestra.com