

reduction of GE and MOSH in refined palm oil

Alexey Shevchenko
Global Process & Engineering Manager
Edible Oil Systems
Alfa Laval Copenhagen A/S

MOSTA webinar workshop 7th April 2021

08/04/2021 | © Alfa Laval 2 | www.alfalaval.c

A global company

1000L

- 138 years old company

- 39 production units*
- More than 100 service centres
- Sales companies in 55 countries
- Other sales representation in 45 countries

* Plus a number of minor production and assembling units

Making our world better, every day

~L/~L

Advancing better[™]

Alfa Laval products are used to optimize the performance of our customers' processes to:

- make food and pharmaceutical production safer
- reduce water and energy usage
- protect the environment

We serve most industries

Edible oils
Biotech and pharmaceutical
Chemicals
Oil and gas
Engine and transport
Fluid power
Food and beverages
HVAC
Industrial fermentation
Latex

Biofuel (including HVO)

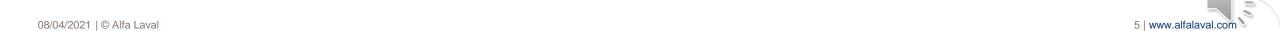
Metal working

Mining and mineral processing

Marine and diesel

Power

Pulp and paper


Refrigeration and air-conditioning

Semiconductor systems

Steel and coke oven gas

Sugar

Wastewater treatment

Hazardous compounds in edible oils and fats

Health concern

~L/~L

Latest challenges of hazardous compounds

3-monochloropropanediol esters (3-MCPDE)

glycidyl esters (GE)

mineral oil hydrocarbons (MOSH & MOAH)

- Possible effect on kidney & male fertility*
- Formed >140°C in the presence of acidity and chloride ions*
- Difficult to remove after formation.
- Genotoxic and carcinogenic (can damage DNA & cause cancer)**
- IARC group 2A carcinogen (probably carcinogenic to human) ***
- Formed rapidly >220°C at long retention time
- Main pre-cursor Diacylglycerides (DAG)
- Can be removed by direct stripping or post-refining
- Long chain heavy molecule hydrocarbons
- Pose potential health hazards
- Coming from malpractices in process operation

MOSH = Mineral Oil Saturated Hydrocarbons

MOAH = Mineral Oil Aromatic Hydrocarbons

^{*} Institute of Food Science & Technology, UK (IFST)

^{**} European Food Safety Authority (EFSA)

^{***} International Agency for Research on Cancer (IARC)

How much is parts per million?

10 ppm GE = one pail of 10 kg pure contaminant poured into a 1,000 tons storage tank

100 ppm MOH = one barrel of 100 kg pure contaminant poured into a 1,000 tons storage tank

Glycidyl Esters (GE)

EU legislation on GE affects supply chain

Glycidyl	fatty	acid	esters	express	ed
as glycic	lol				

Maximum level µg/kg

Vegetable oils and fats placed on the market for the final consumer or for use as an ingredient in food with the exception of the foods below

1,000 **(1.0 ppm)**

Vegetable oils and fats destined for the production of baby food and processed cereal-based food for infants and young children

500 **(0.5 ppm)**

Commission Regulation (EU) 2018/290, of 26 February 2018

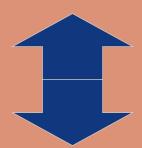
GE formation and the contributing factors

1 bonded fatty acid

Contributing factors:

- High Diacylglycerides (DAG)
- High deodorizing temperature (>220°C)
- Long retention time in deodorizer
- Hydrolysis at high temperature with steam effect

High temperature
High DAG in feed
Long retention time

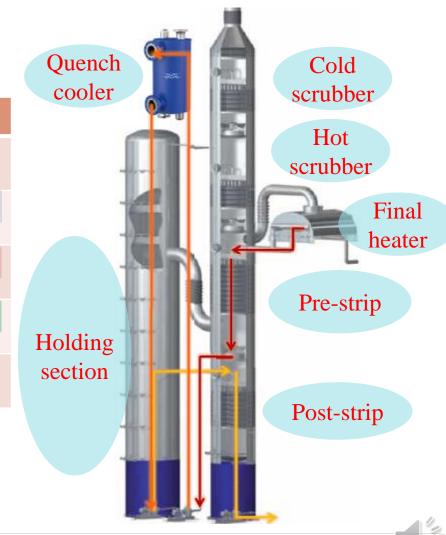

Low temperature Low DAG in feed Short retention time GE "Formation / Stripping Balance"

GE Formation

GE Stripping

High temperature High steam sparging Stronger vacuum

Low temperature Low steam sparging Weaker vacuum



Palm oil deodorisation with GE reduction

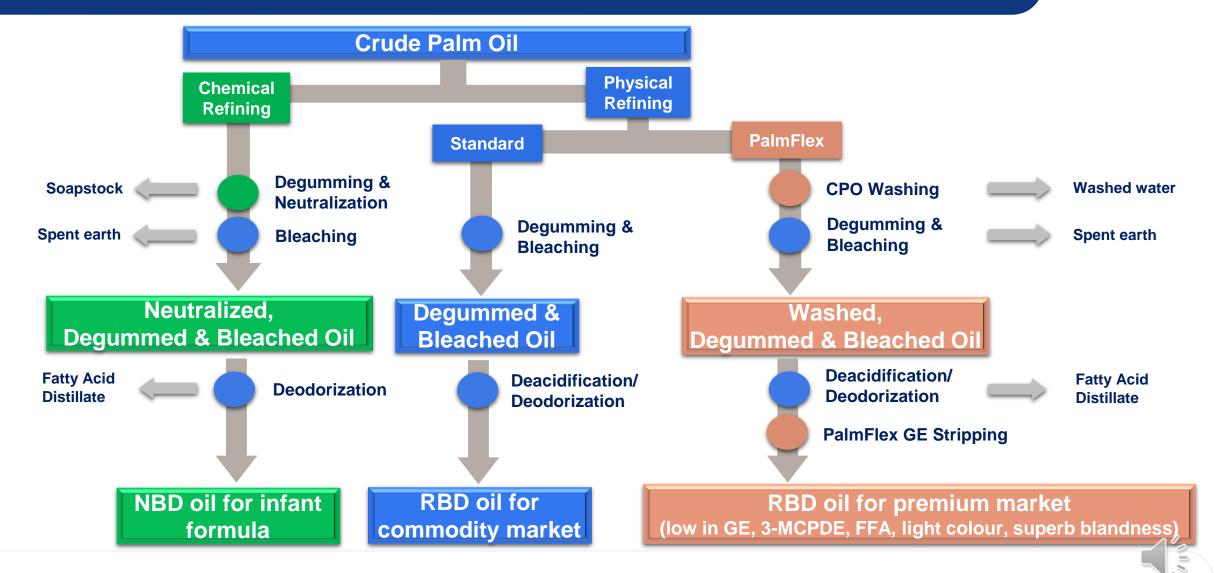
by dual temperature and dual stripping

Parameter	1	2	3	4	5	6	7
Stripping temperature (°C)	260	260	260	260	260	260	260
Deodorizing temperature in 60 minutes (°C)	255	240	230	230	225	220	215
Colour in Red (51/4 " Lovibond)	2.5	2.5	2.5	2.6	2.8	2.8	3.2
GE in refined oil, ppm	8.5	4.5	3.2	3.5	3.0	2.5	2.2
Pressure, mbar	2.5	2.5	2.5	2.5	2.5	2.5	2.5

GE stripping pilot test result

- Test conducted for RBD palm oil

No.	Sample	GE result (mg/kg)	3-MCPD result (mg/kg)	
1	GE of RBDPO feed	9.4	0.91	
2	GE test at 200°C	1.1	0.86	
3	GE test at 210°C	0.3	0.84	
4	GE test at 220°C	0.1	0.86	
5	GE test at 230°C	0.1	0.83	
6	GE test at 240°C	0.2	0.80	


Analysis method: AOCS Cd 29c-13

Proces parameters: Suction pressure 0.7 mbara / sparge-steam amount 1.7%

08/04/2021 | © Alfa Laval 14 | www.alfalaval.com

Alfa Laval PalmFlex – the most optimum refining route

08/04/2021 | © Alfa Laval

Achieve the highest quality

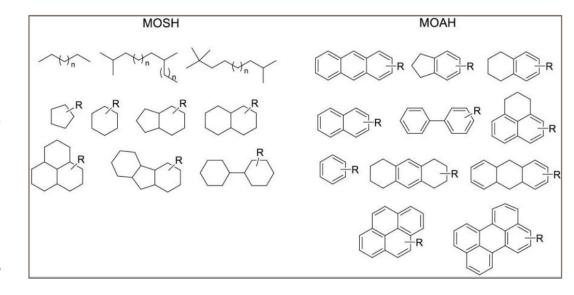
- Optimal refined, bleached and deodorized (RBD) palm oil

Quality of RBD Palm Oil	Standard	PalmFlex
Free fatty acids (FFA)	Max. 0.05%	0.03~0.04%
Moisture and volatile matter	Max. 0.05%	Max. 0.03%
Colour (Lovibond 51/4" cell)	Max. 2.5 red / 25 yellow	Max. 2.0 red / 20 yellow
Peroxide value	Nil	Nil
Taste / odour	Bland / odourless	Superb bland / odourless
Palm fatty acid distillate purity (based on 5% FFA in feed)	Min. 89%	Min. 89%
3-MCPDE	4–6 ppm	< 1 ppm (with washing)
Glycidyl esters (GE)	8–15 ppm	0.3~0.5 ppm

Note: Final oil quality may vary subject to feedstock and process variation.

Mineral Oil Hydrocarbons

MOSH & MOAH


TALFA LAVAL

Latest challenges of hazardous compounds

Mineral Oil Hydrocarbons (MOSH, MOAH) - complex mixture of hydrocarbons C10 up to C50

- Pose potential health hazards in animal studies
- For MOSH & MOAH C10-C24, high temperature deodorization with steam stripping and vacuum could reduce them
- For C24-C30, partial removal is possible depending on steam stripping, strong vacuum and temperature
- Good manufacturing practices is still the best to address these contaminants
- Usage of food-grade lubricants

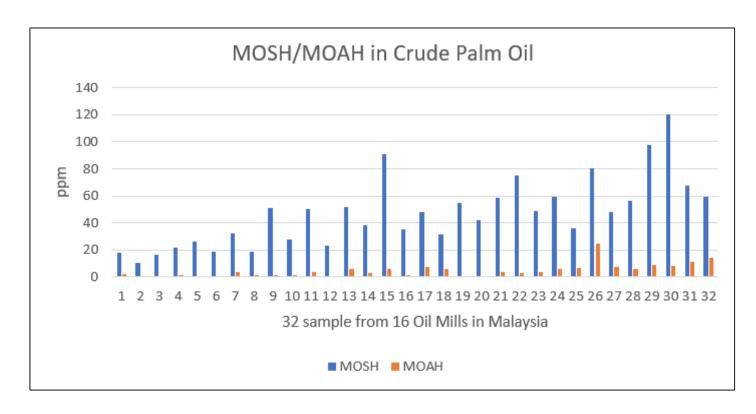
MOSH = Mineral Oil Saturated Hydrocarbons MOAH = Mineral Oil Aromatic Hydrocarbons

MOSH & MOAH market requirement

-max level in vegetable oils and fats set by a large food company

	Max level (applicable 01.07.2020)						
	Palm oils and Coconut oils	Other vegetable oils and Animal Fats including Fish oils	Infant Grade ingredients ** ALARA				
MOSH	< 20 mg/kg oil	13 mg/kg oil	< 10 mg/kg oil				
MOAH	< 2 mg/kg oil	<loq kg="" mg="" oil*<="" td=""><td>< 2 mg/kg oil</td></loq>	< 2 mg/kg oil				

- As of to-date, there are no EU legislation regulating the limits of MOH in vegetable oils and fats due to unavailability of standard method
- Large food companies are setting their own standard


* LOQ: limit of quantification

** ALARA: as low as reasonably achievable

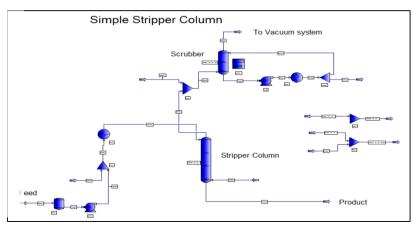
MOSH & MOAH level in crude palm oil

- Samples from oil mills in Malaysia

Observation:

- MOSH are mostly C20 & above (lubricants are mostly long carbon chain for lubricity properties)
- Wide range of MOSH from 10 to 120 ppm; coming from operation malpractices, rather than inherent composition of CPO (CPO usually do not form carbon chain >20)
- MOAH is relatively lower than MOSH (in the ratio of ~1:10)
- With good manufacturing practices, these contaminants can be controlled

MOSH average 47 ppm MOAH average 4.6 ppm


Palm oil MOSH & MOAH reduction – pilot test

- with Alfa Laval PRO II simulation tool and pilot plant

Palm Oil stripping test for MOSH/MOAH removal at :

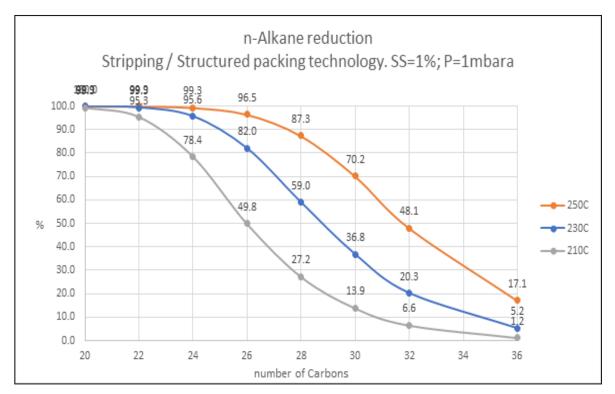
- Three different temperatures 210°C, 225°C and 240°C
- Analytical results compared with results from simulation tool PROII at same process parameters

based on Alfa Laval's proprietary lipid property library coupled with the process simulator PRO II from SimSci with data provided by customer

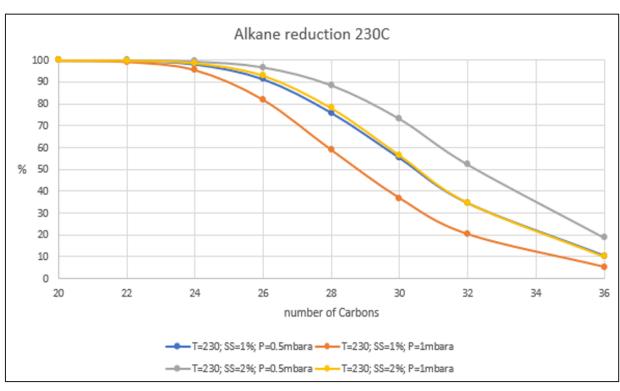
Alfa Laval pilot stripping plant in Denmark

Palm Oil			210°C		225°C		240°C	
MOSH		Feed	Pilot Plant	PROII	Pilot Plant	PROII	Pilot Plant	PROII
C10 - C25	ppm	13.9	2.1	0.3	0	О	0	О
C26 - C35	ppm	41	12	16.5	4.7	6	0	3
C36 - C50	ppm	26	33	29.1	26	26.3	17.8	23.3
Sum C10 - C50 (excl. LOQ)	ppm	80.9	47.1	45.9	30.7	32.3	17.8	26.3
Reduction in total MOSH	%		41	43	62	60	77	67

МОАН		Feed	Pilot Plant	Pilot Plant	Pilot Plant
C10 - C25	ppm	2.5	0	0	0
C26 - C35	ppm	7.6	2.3	0	0
C36 - C50	ppm	7	6.8	4.9	3.7
Sum C10 - C50 (excl. LOQ)	ppm	17.1	9.1	4.9	3.7
Reduction in total MOAH	%		46	71	78


08/04/2021 | © Alfa Laval

Influence of process parameters on MOSH & MOAH removal



- with Alfa Laval PRO II simulation tool

Temperature influence *

Sparge steam and pressure influence *

- * Data provided by a Malaysian refiner. Result shall vary with other samples. Contact Alfa Laval for personalized simulation
- * Performance based on Alfa Laval's proprietary lipid property library coupled with the process simulator PRO II from SimSci

22 | www.alfalaval.co

Conclusion

- Reduction of GE and MOSH with Alfa Laval PalmFlex refining technology

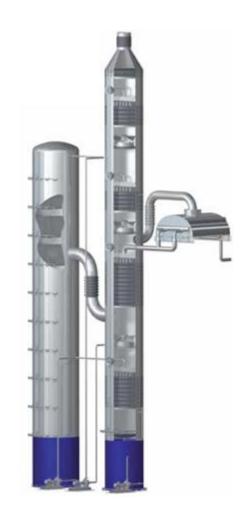
Direct GE stripping can achieve < 0.5 ppm

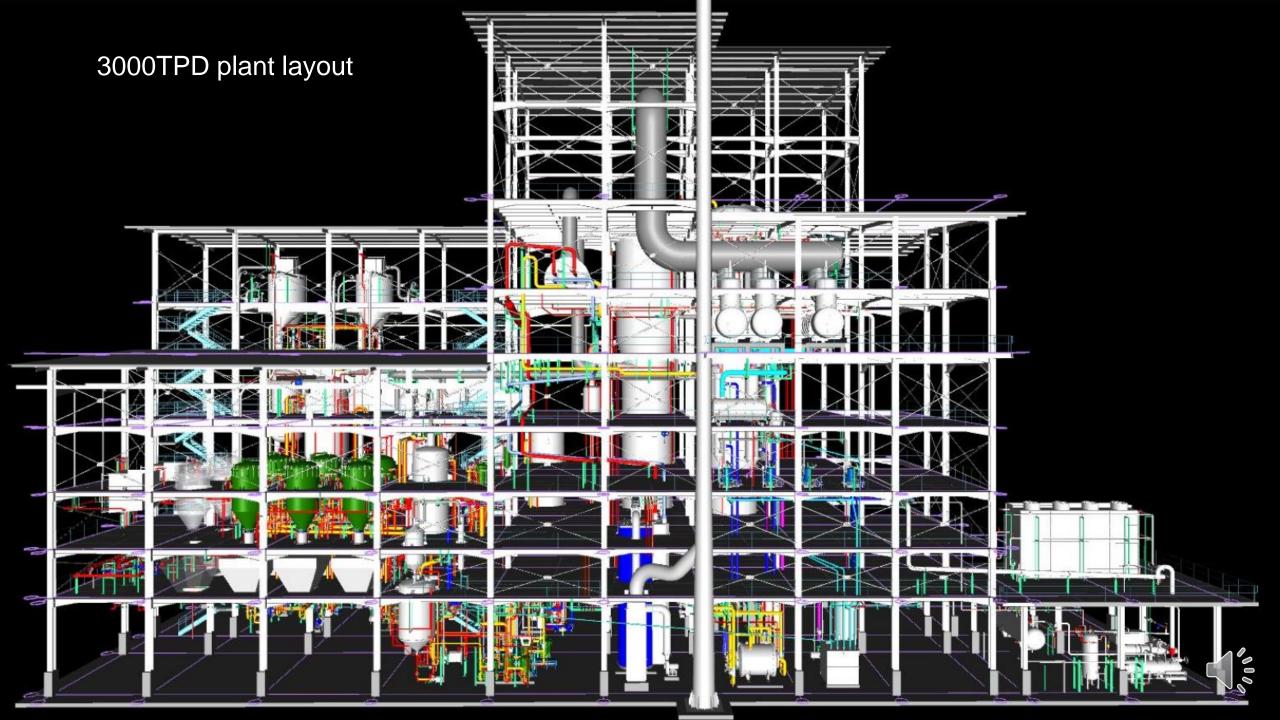
Eliminate the post bleaching and re-refining steps

Highest oil quality with low operating cost

Lighter MOSH can be partially stripped (<C30)

In combination with good manufacturing practices in mill & refinery


Adoption of food-grade lubricants is recommended


Alfa Laval PalmFlex refining

~L/~L

- Highest oil quality with low operating cost

Alfa Laval PalmFlex is a proven refining technology delivering highest oil quality to meet stringent demand on food safety at low operating cost

