Systems thinking in a H₂ economy

Mark Hailwood Karlsruhe, Germany

Some Questions:

- What is driving the dash to a hydrogen economy?
 - Is it logistics?
 - Is it simplicity?
 - Is it environmental efficiency?
 - Is it safety?
- What is the goal?
 - Is this a goal shared by society or is it skewed towards the potential beneficiaries?
 - Are the steps currently being taken good and effective steps toward achieving this goal?

What is the Goal?

- Currently the goal(s) of a "Hydrogen Economy" is/are not clearly defined, however:
 - Hydrogen production is intended to increase both in the number of units and the capacity of these units.
 - Hydrogen is envisaged as replacing hydrocarbons as a combustible fuel.
 - Hydrogen is envisaged as being a '"building block" to manufacture the chemicals previously obtained through traditional petro-chemical processes from ,for example carbon dioxide.

Current Energy, Fuel, Feedstock Systems

Electrical Energy

Nuclear

- Coal, oil, gas
- Hydroelectric
- Waste
- Wind, solar, tidal

Wood

Transportation Fuel Gasoline Diesel Kerosene (Jet) LPG, CNG, LNG Electric (battery)

🛠 Hydrogen

Fuel Storage

 Natural gas reservoirs, gas network
 LPG, LNG
 Petroleum depots

 Industrial Energy
 Coal, oil, gas, electric

Domestic Heating and Cooking Gas, coal, oil, electric (from grid), wood Solar, wind, geothermal (self generation)

Feedstock

Petroleum refining products

Energy, Fuel, Feedstock Systems in a Fossil Fuel Free Economy

Electrical Energy Nuclear

Coal, oil, gas

Hydroelectric

Waste

Wind, solar, tidal

Wood

Hydrogen?

Industrial Energy

Coal, oil, gas, electric

Hydrogen?

Transportation Fuel & Gasoline & Diesel & Kerosene (Jet) & LPG, CNG, LNG & Electric (battery) & Hydrogen

 Domestic Heating and Cooking
 Gas, coal, oil, electric (from grid), wood
 Solar, wind, geothermal heat (self generation)

Hydrogen?

Fuel Storage

Natural gas reservoirs

gas network

LPG, LNG

Petroleum depots

Batteries

Hydrogen?

Feedstock

 Petroleum refining products

Hydrogen?

Consequences

- **Transportation** would needed to be fuelled by hydrogen or electrical power.
- Industrial energy demands will need reviewing
- Fuel storage will need to be redesigned
- Electrical power generation with non-carbon resources will have to expand.
- Hydrogen generation will have to develop enormously.
- Hydrogen storage and transport will need to develop

Centralised versus Decentralised Approach?

 Mimic and /or re-purpose existing centralised and clustered generation, storage and transport of energy and fuel for Hydrogen use

versus

• Evaluate decentralised approach where Hydrogen (for use as electrical power and fuel) is generated, stored and transported close to point of use so is co-located with community and industrial users

Centralised versus Decentralised Approach? (2)

- Centralised (mimic existing oil & gas):
 - Large scale hydrogen generation
 - Large scale storage
 - Extensive transportation network in pipelines or transport containers
- Decentralised
 - Local electrical power \rightarrow small scale H2-generation
 - Small scale storage
 - Local use in industry, households or transport fuel systems
- Engineering feasibility and safety related risks need to be assessed.

Hydrogen Generation

- Electrolysis of water
- Fresh water in streams, rivers, lakes and underground aquifers is extremely valuable as drinking water and for agriculture.
- Electrolysis of sea-water, requires water purification. Energy is required for the reverse osmosis process.
- Hydrogen must be captured, compressed, stored and transported.
- Hydrogen generation in an economic form is energy intensive

Hydrogen Storage and Transport

- Currently hydrogen is not stored on the same scale as hydrocarbons.
- Unsolved questions:
 - Is a hydrogen pipeline network feasible? High pressures, losses need to be managed, safety of pipelines – new or repurposing?
 - Is hydrogen storage in caverns, rock formations or aquifers possible? – This is the way that natural gas is stored to balance winter demand.
 - If hydrogen is used to power vehicles, what could a large scale distribution network look like?

H₂ Economy without Hydrocarbons

- What happens to the:
 - steel (and other metals) industry;
 - cement industry;
 - polymer industry?
- These industries are required to achieve a H₂-based economy
- If these industries no longer exist in Europe, then they will move to developing economies.

Thoughts on the Decision Making Process (1)

- Just because a technology functions, does not make it:
 - safe;
 - environmentally sound;
 - economically and politically desirable.
- Just because government funding and incentives are provided does not make it:
 - economically and politically desirable;
 - a good long-term decision for the energy future of the country.

Thoughts on the Decision Making Process (2)

- When technology is exported to developing economies will it be:
 - safe;
 - managed in an environmentally responsible manner;
 - beneficial to the economy of the new host country?
- Engineers need to think about inter-connected technologies and the effects on the whole system.
- Complex decision making is not just a science and engineering decision, but also an economical, political, sociological and ethical decision which needs to look at longer term impacts.

Example Influence Diagram for Hydrogen Use Decision Making

Finally

- Energy supply is highly complex.
- Hydrocarbons are not just fuels, but also feedstocks. Replacing them is a risky decision with many unknowns.
- Decision making in a complex system does not lead to one optimum result.
- Engineers will be confronted with ethical decisions.
- A H₂-Economy is unlikely, however an increase in H₂ in a more diverse energy and material supply system is a realistic outcome.

Photo credits, titel page:

Wind Turbines and Power Lines, East Sussex, England - April 2009

Photo by DAVID ILIFF. License: CC BY-SA 3.0

Mina-Al-Ahmadi oil refinery night

This work has been released into the public domain by its author, <u>Grubb</u>.