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Recovering valuable minerals through bubbles

Separation of valuable minerals

from waste rock based on
hydrophobicity.

Chemicals and air are added into
the cell.

Bubble-particles aggregates rise
from the pulp to the froth.
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A large-scale process
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Control inputs . Measurements
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Model Predictive Control
Control actions
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Optimisation Process models Use a dynamic model o_f the process to
t — T—— predict its future evolution and choose
Jio the best control action

Cost function
Constraints

Optimisation problem

min,J = fthL[x, y,u,w,t]dt

s.t. dx(t
dgf) = f(x,y,u,w,t)

h(x,y,u,w,t) =0
gx,y,u,w,t) <0
x(tg) = xo Feedback!
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Introduction

Froth flotation is the largest tonnage separation in mineral process-

ABSTRACT

£l 11 h ‘)

isa P y simple op i ,asa process with inherent instability, it ex-
hibits complex dynamics. One of the most efficient ways to increase flotation performance is by implementing
advanced controllers, such as Model Predictive Control (MPC). This type of controller is very dependent on the
model that represents the dynamics of the process. Although model development is one of the most crucial parts
in MPC, flotation models have been mainly developed for simulation purposes (i.e. analysis and design) rather
than control purposes. This paper presents a critical literature review on modelling for froth flotation control.
Models reviewed have been sub-classified as empirical, phenomenological and hybrid according to their char-
acteristics, In particular, it is highlighted that models have so far primarily focused on the pulp phase, with the
froth phase often neglected; when the froth phase is included, kinetics models such as those used for the pulp
phase, arc commonly used to represent it. Froth physics are, however, dominated by processes such as coales-
cence, liquid motion and solids motion, which have been p: ly delled through I teady-stat
models used for simulation purposes, rather than control purposes. There remains a need to develop appro-
priate models for the froth phase and more complex models for the pulp phase that can be used as part of MPC

The chall iated with the develop of such models are discussed, with the aim of
providing a pathway towards better controlled froth flotation circuits.

and the velocity and stability of the froth; and the mineral concentration

in the feed, concentrate and the tailings (Laurila et al., 2). In terms of

process control, these variables are classified as manipulated, distur-
-

e
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ABSTRACT

It Is widely accepted that the implementation of model-based predictive controllers (MPC) ensures optimal
operation If an accurate model of the process is available, In the case of froth flotation, modelling for control
purposes is a challenging task due to inherent process instabilities. Most models for control have only focused on
the pulp phase rather than the froth phase, which is usually oversimplified or even neglected. Despite the fact
that froth stability can significantly affect the overall performance of flotation cells, there is still a gap in
literature regarding flotation models for control purposes that properly include froth physics,

In this paper we describe the development of a dynamic flotation model suitable for model predictive control,
Incorporating equations that describe the physics of flotation froths. Unlike other flotation models for control in
the literature, the model proposed here includes important variables related to froth stability, such as bursting
rate and air recovery, as well as simplified equations to calculate froth recovery and entrainment, These model
equations allow estimating the amount of valuable material reporting to the concentrate, which can be used as a
proxy to estimate grade and recovery. Additionally, pulp-froth interface physics was also included in our model,
which enables a more accurate prediction of relevant flotation varlables,

A sensitivity analysis of the parameters showed that two out of seven parameters were highly sensitive, The
highly sensitive parameters are the exponential factor n of the equation for the overflowing bubble size, and the
constant value a of the equation for the bursting rate. Although the other parameters showed a reasonably lower
sensitivity than n and a, the results also revealed that there is a di in the accuracy if
the are poorly d. Further of impx variables for control exhibited a good
adaptability to changes in typical variables, such as air and feed flowrates.

An analysis of degrees of freedom of the model established that two variables need to be fixed to have a
completely determined system. This means that two variables are available for control purposes, which can be air
and tailings (through the of the ive control valves). This study therefore paves the
way for the implementation of a robust dynamic model for flotation predictive control, incorporating important
froth phenomena.

1. Introduction remains a challenge as it strongly relies on a dynamic model of the

process that accurately predicts the future behaviour of the system

Control and optimisation of the froth flotation process have gener- (Desbiens et al., 1994, 1 rd et al,, 2009; Sbarbaro and del

ated considerable research interest as even small improvements in the Vvillar, 20 gh a 1; Shean and Cilliers, 2011;
separation efficiency translate into important i in producti )2

https://doi.org/10.1016/j.mineng.2021.107192
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ARTICLE INFO ABSTRACT
Keywords: Modelling for flotation control purposes is the key stage of the implementation of model-based predicted con-
Froth flotation trollers. In Part I of this paper, we introduced a dynamic model of the flotation process, suitable for control

Flotation control
Flotation modelling

purposes, along with sensitivity analysis of the fitting and of control variables.
e Our proposed model is the first of its kind as it includes key froth physics aspects. The importance of including
Model calibration S g s i . i
Model validation froth physics is that it improves the estimation of the amount of material (valuables and entrained gangue) in the
Model predictive control concentrate, which can be used in control strategies as a proxy to estimate grade and recovery.
In Part I of this series, experimental data were used to estimate the fitting parameters and validate the model.
The model calibration was performed to estimate a set of model parameters that provide a good description of
the process iour. The model calibration was by ing model predictions with actual
nmeasurements of variables of interest. Model validation was then performed to ensure that the calibrated model

. properly evaluates all the variables and conditions that can affect model results. The validation also allowed
A I r re C O V e r further assessing the model’s predictive capabilities.
For model calibration and validation purposes, experiments were carried out in an 87-litre laboratory scale

flotation tank. The experiments were designed as a randomised 32 full factorial design, manipulating the su-
perficial gas velocity and tailings valve position. All experiments were conducted in a 3-phase system (solid-

H liquid-gas) to ensure that the results obtained, as well as the behaviour of the flotation operation, are as similar

u e I t as possible to those found in industrial flotation cells.
In total, six fitting parameters from the model were calibrated: two terms from the equation for overflowing
bubble size; three parameters from the bursting rate equation; and the number of pulp bubble size classes. After

A H H - the model cali ions were to validate the ictions of the model against experimental
Ir and tai INngs owrates o b i et o8 SR Al e e o
/ important flotation variables, such as pulp level, air recovery, and overflowing froth velocity. The high accuracy
of the predictions suggests that the model can be successfully implemented in predictive control strategies.
Overflowing froth velocit

/ g y 1. Introduction inherent instability.

Despite the importance of the froth phase in the overall performance
g d g g Model Predictive Control (MPC) is attracting widespread interest in of a flotation cell, only few studies have included it in their models for
/ P u I p b u b b I e S I Ze d I St rl b ut I O n fields such as mineral processing. One of the main aspects of MPC is the predictive control, such as those found in Bascur (1982),Zaragoza and

availability of a dynamic model of the process that is accurate enough — Herbst (1989), Putz and Cipriano (2015),Tian et al. (2018). A deeper
vet si i — to make icti on it variables. However. discussion of these studies is found in Part T of this naner. while an

87-litre laboratory-scale flotation tank at Imperial College London https://doi.org/10.1016/j.mineng.2021.107190
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