The Journey Towards Remote and Autonomous Operations

Tom Fiske, Ph.D.

Principal Technology Strategist, USTC Yokogawa Electric Corporation tom.fiske@Yokogawa.com

Maurice Wilkins, Ph.D.

Executive Advisor, MKHQ

Yokogawa Electric Corporation

maurice.wilkins@uk.yokogawa.com

Co-innovating tomorrow™

Agenda

- 1. IA2IA Background
- 2. End-User Focus Areas
- 3. Use Cases
- 4. IA2IA Building Blocks
- 5. Path to Autonomous Operations
- 6. Summary

AUTONOMOUS OPERATIONS: The vision from Yokogawa on Smart Manufacturing

Industrial Autonomy Maturity Model

		Autonomy Level	Stage	Attribute	_
Î	Industrial autonomy	5	Autonomous Operations	The facility is completely autonomous including process operations, supply chain, etc. System of systems	Unattended Ops
		4	Autonomous Orchestration	The facility operates autonomously, synchronized to optimize manufacturing and safety under most circumstances. Autonomous systems	
PIA		3	Semi-Autonomous	A mixture of autonomous and automated assets with human orchestration. _{Autonomous components}	
IA2	Industrial automation	2	Automated	Humans are responsible for safe operations, assisted by traditional automation systems	Remote Ops
		1	Semi-Automated	Humans and automation systems share the workload, with humans responsible for safe operations.	
		0	Manual	Humans control the facility at all times.	

Remote Operations

Adopting intelligent sensor for condition monitoring

Conduct remote monitor and inspection

Co-innovating tomorrow[™]

Autonomous Operations Vision

System of Systems

Everything is inter-connected in complicated ways, and the components function as independently operated and managed systems that work together to achieve a purpose that cannot be achieved by any single system.

Extending Autonomous Functionality

Expansion of connectivity and optimization scope

End-Users' Perspective

Levels of autonomy reached by end-users

Source: Omdia survey of more than 500 digital transformation leaders that was commissioned by Yokogawa

Industry adoption of autonomy

🗖 Yes 🔳 No

Co-innovating tomorrow™

Some Common Elements

» Goals

- Improve safety, increase efficiency, lower costs, improve asset availability, and achieve sustainability initiatives, ensure compliance
- >>> Approach
 - Greenfield design for NUF (one-year); "walk-to-work" facilities
 - Brownfield selective autonomy to reduce manpower, remove people from hazardous environments, improve decision making, etc.
 - Improve reliability
 - Including process anomaly detection and equipment condition monitoring
 - Standardize operations and maintenance (campaign and episodic)
 - Increase collaboration
 - Conduct remote operations and surveillance (IOCs)
 - Use more intelligent sensors
 - Leverage data utilizing AI, Cloud, and Edge Devices
 - Adopt platform approach to analyze data, build models, deploy solutions and scale quickly
 - Conduct operator rounds and inspection with robots and drones
 - Organizational & Capability redesign over time (Cultural shift)

Cloud Architecture for Smart Manufacturing

Co-innovating tomorrow[™]

Operations Management

Manual

- Production process are executed manually
- Paper based instructions and data recording
- Equipment not connected

- Automated system play a limited role
- Significant human interactions
- Limited instrumented equipment – primarily for automation purposes

Automated

- Automated system perform majority of production
- Silos of information
- Operators share workload with automation system

- supported by advisory systemsOperators monitor
- system's performance

Autonomous Orchestration

- A mixture of <u>autonomous</u> <u>Systems</u> and automated assets
- Cloud and data lakes enable MC orchestration
- Humans perform orchestration between functional domains
- Decisions and tasks guided by AI and digital twins

Autonomous Operations

autonomous facilities

provides complete vertical

and horizontal integration

Futuristic state – fully

System of systems

Co-innovating tomorrow™

Autonomous Components and Al

Past: Automated Operations

No use of AI, plant performance relies heavily on individual skill, slow-decision making process

Key: regulatory controllers, OTS, Shift Logs, Production Reports

Present: Select Autonomy Partial use of AI to realize Profit-Driven Operations (PDO), AI advisory dashboards support decision making

Key: High Fidelity "What If" Scenario Simulator Al/Machine Learning Advisory Dashboards

Other Applications:

Asset anomaly predictive maintenance, process anomaly root cause analysis, product quality prediction and control, and process control

Plant of the Future:

- · More plant data
- More powerful computing resources
- Demand tighter compliance with management KPI's
- · Less available skilled human resources
- · Less time available for decision-making

Future: AI-Driven Autonomous Optimization

Al optimizes plant, limited to no human intervention. Humans may be in remote locations since their immediate presence is not required

Key: Auto ML, Al Algorithms, Combining Knowledge with ML (Numeric Al)

Maximize Management KPIs

Vibration Monitoring with Sushi Sensors

Pump Vibration Monitoring with Sushi Sensors

Live Monitoring Dashboard

Robotics

Co-innovating tomorrow[™]

Source: Singapore Economic Development Board

Roadmap

Summary

- >>> Industrial autonomy is inevitable.
- >>> Industrial autonomy enhances industrial automation by:
 - Adding layers of smart sensing and machine cognition
 - Anticipating and adapting to both known and unforeseen circumstances
 - Removing the need for human intervention for some functions or activities
- >>> Industrial autonomy will penetrate all areas of operation:
 - Manipulating and controlling the process
 - Manufacturing operations management
 - Asset Management
 - Planning and Scheduling
 - Supply chain activities, etc.
- » Autonomous building blocks are already available

Companies are saying they need industrial autonomy sooner rather than later

Co-innovating tomorrow[™]

The names of corporations, organizations, products and logos herein are either registered trademarks or trademarks of Yokogawa Electric Corporation and their respective holders.

