Digital tools for optimised powder processing

Dr Jess Andrews

Research Scientist

Content

Introduction to CPI, and the complex particles facility

Overview of CPI research facilities for powder processing, highlighting the application of digital techniques:

- Oral solid dose manufacture
- Powder packing

Powder Processing at CPI

We help companies to develop, prove, scale-up and commercialise new products and processes

Creating a **healthier** society, **cleaner** environment and a **vibrant** UK economy...

...by ensuring every great invention gets the **best** opportunity to become a successfully marketed product.

Biotechnology

Biotherapeutics

Formulation and materials

Pharmaceutical processing

Photonics

Printed electronics

Flexible hybrid electronics

Digital

...with our expertise and core capabilities

Complex Particles

Particle Prototyping

- Wet Granulation
- Dry Granulation & Tabletting
- Mixing
- Milling
- Coating

Particle Characterisation

- Granulometry
- Dissolution
- Powder Flow
- Moisture Sorption
- Attrition

Process Optimisation

Performance

Optimisation

80

- Contactless PAT (inline analysis)
- Chemometrics and complex data analysis
- Model based control
- Virtual Design e.g. DEM, CFD

Process Scale-up

- Packing and Filling
- Wet Granulation
- Tabletting

We innovate, design and optimise particulate components and the processes to make them

Research facility for manufacture of oral solid dosage forms

Importance of PAT & Advanced Process Control

Real-time insight from PAT enables Quality by Design, and Advanced Process Control

Advanced Process Control protects product quality against raw material and process variability

Introduction to In-Process Measurement

On-line, in-line, at-line, off-line – which definition to use?

FDA definition (https://www.fda.gov/media/71012/download):

At-line: Measurement where the sample is removed, isolated from, and analyzed in close proximity to the process stream. **On-line:** Measurement where the sample is diverted from the manufacturing process, and may be returned to the process stream. **In-line:** Measurement where the sample is not removed from the process stream and can be invasive or noninvasive

Picture taken from: https://metrohm.blog/on-in-at-offline/

In-Line Measurement

Sampling Interface

Bespoke sampling interface ensures **optimal sample presentation** for the three PAT tools.

Interface connects directly to the barrel exit, allowing **continuous monitoring** of the product.

Diverters guide the product through the interface, to **minimise segregation and dead zones**.

Each wiper **moves independently**, and is optimised for the beam size and integration time of its PAT tool.

The product can be collected from the bottom of the interface.

Interface Optimisation Using Discrete Element Modelling

3D digital model of the interface

First, a **working model of the PAT interface was created based on the CAD design** as it was supplied. Several different mesh techniques were used to simulate the moving parts, allowing us to investigate optimal timings for best sample presentation to the probes.

Particle Characterisation

Then, granules were added, represented by spheres, a typical simplification. Particle parameters were adjusted to match key behaviours such as angle of repose to account for differences in shape from real granules.

Predict flow through PAT

Granule flow using particles of varying sizes were then injected into the model to characterise the flow. The model can be used **to investigate differences in residence time, which cannot be measured experimentally**.

Powder Diverter Optimisation

Residence time differed between sizes, with segregation identified in the model. We are now investigating different diverter designs to **optimise flow and minimise segregation**.

www.uk-cpi.com

Primary Control Mechanism - Granulator APC System

Controlling granule properties indirectly controls tablet properties

APC system preserves tablet properties when granule production is disturbed Tablet properties are optimised to the target specification when made from granules produced using APC

Control models: Torque Temperature Moisture content

Monitoring models: PSD API content

Torque and moisture content controlled to set point Temperature controlled within constraints

Chemometric Modelling - PSD Soft Sensor

Maximising the benefits of one PAT probe by using the output in two separate models

Initial PCA showed strong correlation between **NIR spectra, PSD, and processing conditions**

All of these factors were used in the soft sensor – a **hybrid model** using spectral and process data

Data divided into 60 % training and 40 % validation Model predicts the % by mass of the sample that will be contained in a series of sieve fractions

Response Variable	Root mean square error of estimation (RMSEE) / %
% 0 μm	3.75
% 150 μm	2.31
% 250 μm	1.51
% 425 μm	0.74
% 600 μm	0.31
% 710 μm	0.33
% 850 μm	1.00
% 1180 μm	5.07

Error between actual and predicted data **<5 %** cpi for both training and validation sets

Chemometric Modelling - PSD Soft Sensor

Actual Predicted Confidence Limits

www.uk-cpi.com

🏹 cpi

Tabletting

A method to define the optimum tabletting conditions for a given granule, to achieve a target specification in tablet properties

 Initial DoE identified the process parameters that had the strongest effect on tablet properties → compression force and compression speed.

Compression force Compression speed Compression speed × Compression force Compression speed × Punch penetration depth Compression force × Pre-compression force Punch penetration depth Punch penetration depth × Pre-compression force Pre-compression force Compression speed × Pre-compression force

2. A screening DoE was used to determine the ideal **operating space** (in compression speed and force) to meet the target specification.

3. 10 tablets were produced using the ideal operating parameters. **All tablets met the target** specification.

Quality Attribute	Target	Batch Average
Mass (mg)	500	520.7
Diameter (mm)	11.28	11.28
Tensile strength (MPa)	2	2.25

Dissolution

A method to predict the dissolution profile of a tablet from its manufacturing process parameters, and to define the operating space for provision of tablets with specific dissolution behaviour

Identification

Identified the **manufacturing process parameters** that have the strongest impact on dissolution profile

> Hardness Compression force Bulk density Granule L/S ratio

Analysis

Used multivariate analysis methods to investigate the **correlation** between the key process parameters and dissolution behaviour

Modelling

Used ordinary least squares regression to build a model that **predicts dissolution profile** from process parameters

Validation

30 % of the data set retained for **internal validation**

(R² > 0.8 for both models)

Future Application

This method can be applied to the prediction of **nonpharmaceutical** tablets, granules, and capsules.

Research facility for powder filling

Process Optimisation in Powder Packing

Packing Problems:

- Variable pack-to-pack quality
- Variable fill level and packed weights (weights and measures legislation)
- Poor reliability and frequent stoppages
- Long change-over times between products
- Lengthy trial runs when introducing new products

How can CPI help?

Open access research facility for:

- Feasibility testing of new products or processes
- Optimisation of packing processes to reduce variability and product giveaway
- Optimisation of process monitoring and control strategies, including PAT

Capability Overview

Flexible, open-access platform can be optimised for a range of packing processes:

- > Auto and semi-auto operation
- > 4 fill modes (2 volumetric, 2 gravimetric)
- Exchangeable Screens
- > 3 tooling types
- > Built-in checkweigher and conveying system

Various **process optimisation and control** technologies:

- > Solid flow sensor & hopper level sensors
- Three PAT sensors

www.uk-cpi.com

PAT Integration

PAT tools are interchangeable between the granulation rig and Pack & Fill rig (except Raman, for safety reasons)

MultiEye2 NIR probe •

Tracerco Hyperion **bulk**

density probe also

Eyecon2 particle analyser •

Mobile powder rig is a fully PAT-enabled portable solution for small scale or in-situ experiments

Mobile powder rig

NIR

- Segregation
- Moisture sorption/loss •

Eyecon

- Particle breakage
- Aggregation

Tracerco

- Segregation
- Compaction

Summary

CPIs open access research facilities can be used to de-risk innovation in powder process control.

The oral solid dose pilot line contains digitally-enabled granulation, tabletting, and dissolution equipment, with predictive models to facilitate Quality by Design. The Pack & Fill pilot line, and mobile powder rig, provide a test bed for the development and optimisation of digital control strategies to increase efficiency and minimise waste.

Thank you

For more information visit www.uk-cpi.com

Dr Jess Andrews Research Scientist

Jess.Andrews@uk-cpi.com +44 (0)7768 924287 twitter.com/**ukCPI**

facebook.com/**ukCPI**

linkedin.com/company/uk-CPI in

youtube.com/**ukCPI**

