

Optimising energy and carbon management for an AAD plant using MILP

Harry Laing

Advances in the Digitalisation of the Process Industries 2021 21st October 2021

C500, Merz Court, Newcastle University
 h.j.laing@ncl.ac.uk
 @H_Laing1

From Newcastle. For the world.

Talk Outline

- What happens to our waste? (Background)
- The Poop Processing Plant (Site Overview)
- Another Tax?! (Carbon Emissions)
- What's the point (of the app)? (Purpose)
- How does it work? (**Optimisation and Modelling Techniques**)
- The App! (Demonstration)
- Final Comments

What happens to our waste?

How much?!

From Newcastle. For the world.

process intensification group

NORTHUMBRIAN WATER*living* water

The Poop Processing Plant

Overview of the Howdon Plant

 $E_{GEN,1}$

 $E_{GEN.2}$

 $E_{GEN,4}$

Biomethane Processing Plant

- **Biomethane (Biogas)** produced form Anaerobic Digesters
- Biogas **OR** Natural Gas (not both) can be used in CHP or Boiler [CHP4 Nat Gas Only]
- **Biogas** can be enriched for Gas Injection
- Flare Stack available as last resort ٠

process intensification group

Another Tax?!?

ncl.ac.uk

Carbon Neutrality Pledge and Tax

•	Northumbrian V	Vater Ltd pledges	to be Carbon	Neutral by 2027
---	----------------	-------------------	--------------	-----------------

- To aid/incentivise the move, NWL will incur a 'Carbon Tax' (subject to a Carbon Emissions Performance Criteria)
- Cost: £187 per tonne CO2e

Variable	Factor	Units	
Import Electricity	0 or 0.31	kgCO ₂ e/kWh	
Export Electricity	-0.28307	kgCO ₂ e/kWh	
Import Natural Gas	0.18396	kgCO ₂ e/kg	
Export Biomethane	-2.04652	kgCO ₂ e/m ³	
Propane	1.51906	kgCO ₂ e/L	
Diesel	2.9705	kgCO ₂ e/m ³	
Biogas CHP	0.0175	kgCO ₂ e/m ³	
Biogas residual	0.16	kgCO ₂ e/m ³	

IMPROVING THE ENVIRONMENT

Our ambitious goals in this area are to:

- Be leading in the sustainable use of natural resources, through achieving zero avoidable waste by 2025 and being carbon neutral by 2027
- Demonstrate leadership in catchment management to enhance natural capital and deliver net gain for biodiversity
- · Have the best rivers and beaches in the country
- · Have zero pollutions as a result of our assets and operations

From Newcastle. For the world.

What's the point (of the App)?

Purpose of the App

- Operators have no way of validating their current operational strategy
- Daily Biogas production levels change based on sludge processing demands
- Electricity prices change daily ("fixed variable")
- Natural Gas prices can change seasonally

• <u>Aim</u>: To provide operators/managers with a quick tool to validate operational decisions, based on up to date pricing, biogas production and carbon emissions

E.g. Varying Electrical Costs

• Electrical Import and Export costs vary every half hour, but are fixed one day ahead for 24 hours

From Newcastle. For the world.

process intensification group

How does it work?

ncl.ac.uk

How can we define the plant model?

- All flow rates and process limits can be defined as a series of linear equations
- For example: CHP Engine gas flows
 - Gas flow to a CHP engine can be either Biogas $(B_{CHP,i,t})$ or Natural Gas $(N_{CHP,i,t})$
 - Each unit has a maximum capable gas flow
 - Minimum gas flow is half the maximum for operation

 $B_{CHP,min} \leq B_{CHP,i,t} \leq B_{CHP,max}$

 $N_{CHP,min} \leq N_{CHP,i,t} \leq N_{CHP,max}$

Newcastle

Universitv

Linear Programming Model - CHP Example

- Gas flow must be either Biogas **OR** Natural Gas
- Use a binary variable, $z_{i,t}$ (= 1 or 0), to force this choice

$$B_{CHP,min} \cdot \mathbf{z}_{i,t} \leq B_{CHP,i,t} \leq B_{CHP,max} \cdot \mathbf{z}_{i,t}$$

$$N_{CHP,min} \cdot (1 - \mathbf{z}_{i,t}) \leq N_{CHP,i,t} \leq N_{CHP,max} \cdot (1 - \mathbf{z}_{i,t}) \qquad \mathbf{z}_{i,t} = \mathbf{0}$$

 $z_{i,t} = 1$

Linear Programming Model - CHP Example

- In addition, the engines can either be **On** or **Off**
- Use two more binary variables, $w_{i,t,1}$ and $w_{i,t,2}$, to force this choice

 $B_{CHP,min} \cdot z_{i,t} - B_{CHP,min} \cdot w_{i,t,1} \leq B_{CHP,i,t} \leq B_{CHP,max} \cdot z_{i,t} - B_{CHP,max} \cdot w_{i,t,1}$

 $N_{CHP,min} \cdot (1 - z_{i,t}) - N_{CHP,min} \cdot \boldsymbol{w}_{i,t,2} \leq N_{CHP,i,t} \leq N_{CHP,max} \cdot (1 - z_{i,t}) - N_{CHP,max} \cdot \boldsymbol{w}_{i,t,2}$

From Newcastle. For the world.

process intensification group

Linear Programming Model - CHP Example

- Further, must now consider engine start-up, shutdown and minimum operating time once switched on
- Use four more binary variables, $su_{i,t,1}$, $su_{i,t,2}$, $sd_{i,t,1}$ and $sd_{i,t,2}$

 $B_{CHP,min} z_{i,t} - B_{CHP,min} w_{i,t,1} - 0.5B_{CHP,min} su_{i,t,1} - 0.5B_{CHP,min} sd_{i,t,1} \le B_{CHP,i,t}$

 $B_{CHP,i,t} \le B_{CHP,max} \ z_{i,t} - B_{CHP,max} \ w_{i,t,1} - 0.5B_{CHP,max} \ su_{i,t,1} - 0.5B_{CHP,max} \ sd_{i,t,1}$

 $N_{CHP,min}(1 - z_{i,t}) - N_{CHP,min} w_{i,t,2} - 0.5 N_{CHP,min} su_{i,t,2} - 0.5 N_{CHP,min} sd_{i,t,2} \le N_{CHP,i,t}$

 $N_{CHP,i,t} \le N_{CHP,max}(1-z_{i,t}) - N_{CHP,max} w_{i,t,2} - 0.5N_{CHP,max} su_{i,t,2} - 0.5B_{CHP,max} sd_{i,t,2}$

Mixed Integer Linear Programming (MILP)

 MILP takes a series of linear statements (equalities and inequalities) and aims to minimise a cost function.

$$\min_{x} f^{T}(x) \text{ subject to} \begin{cases} x(intcon) \\ A \cdot x \leq b \\ Aeq \cdot x = beq \\ lb \leq x \leq ub \end{cases}$$

• <u>Aim</u>: to minimise expenditure (maximise potential profits) of our plant based on energy, gas and carbon use/distribution

Mixed Integer Linear Programming (MILP)

• For a single 24 hour optimisation (48 half hourly time periods):

The App!

ncl.ac.uk

The App! General Use

From Newcastle. For the world.

process intensification group

Key Variables:

- 38,000 Nm³ Biogas / Day
- Nat Gas 65 p/therm

	Current Operation	Optimal Operation
Total Revenue	£ 8350	£ 9270
Revenue Excluding Carbon	£ 12390	£ 7927
Cost of Carbon	£ 4040	£ -1343
		Ŷ

Carbon Tax Payable in two years time

Comparison to Current operation

	Current Operation	Optimal Operation
Total Revenue	£ 8350	£ 9270
Revenue Excluding Carbon	£ 12390	£ 7927
Cost of Carbon	£ 4040	£ -1343

From Newcastle. For the world.

process intensification group

Key Variables:

- 38,000 Nm³ Biogas / Day
- Nat Gas 65 p/therm

	Current Operation	Optimal Operation	Current Annual	Optimal Annual
Total Revenue	£ 8350	£ 9270	£ 3.05 M	£ 3.38 M
Revenue Excluding Carbon	£ 12390	£ 7927	£ 4.52 M	£ 2.89 M
Cost of Carbon	£ 4040	£ -1343	£ 1.47 M	£ -0.49 M
		Υ	J	

Carbon Tax Payable in two years time

Final Comments

ncl.ac.uk

- Provides quick optimisations
- Validates operational decisions
- Allows operators/managers to investigate scenarios easily
- Highlights the importance of new legislation (Carbon Tax)
- Demonstrates impactful changes could be made to operational strategy, especially with respect to daily revenues

- Retrospective Analysis
 - Investigate unprecedented energy prices

- Investigation into CHPQA and it's impact on annual operations
 - CHPQA can be considered a tax relief based on the usage on CHP Engines

- With some adaptations, model could be **applied to similar sites** (Such as the Bran Sands site at NWG)
 - Funding secured to implement and deploy models within NWL

NORTHUMBRIAN WATER (iving water

Shaping careers, delivering innovation

Thank you for listening Any Questions?

Ħ

田

C500, Merz Court
h.j.laing@ncl.ac.uk
@H_Laing1

process intensification group

ncl.ac.uk