

Application of Functional Safety to a Burner Management System – How to Avoid Common Pitfalls

Bio: Mike Scott

- B.S. Mechanical Engineering University of Maryland
- Masters of Engineering University of South Carolina
- Licensed Professional Engineer AK, GA, SC, and IL
- Certified Functional Safety Expert (CFSE)
- IEC 61511 committee member
- ► ISA Fellow
 - Co-Chairman of ISA S84 committee on Electrical/Electronic/Programmable Electronic Systems (E/E/PES) for Use in Process Safety Applications
 - Co-Chairman ISA S84 BMS sub-committee member on Burner Management Systems
 - Past Chairman of the ISA S84 Working Group on Performance Based Fire & Gas Systems
- Granted 7-US Patents on Safety Lifecycle
- Embedded Process Safety / Functional Safety role for 18 sites

CEO Cell +1 (907) 301-3111 mike.scott@aeshield.com

Problem Statement

- Burner Management Systems (BMS) are a very common unit operation in the Process Industry
- However, when LOPA is applied to a BMS it often results in:
 - Incorrect Safety Instrumented Function
 definition
 - Orders of magnitude differences in Safety Integrity Level (SIL) targets for like unit operations
- This results in:
 - Increased risk to end user
 - Increased cost of ownership to end user
 - Confusion to Operations and Maintenance on BMS Safety Critical Equipment

Common BMS Issues to Avoid

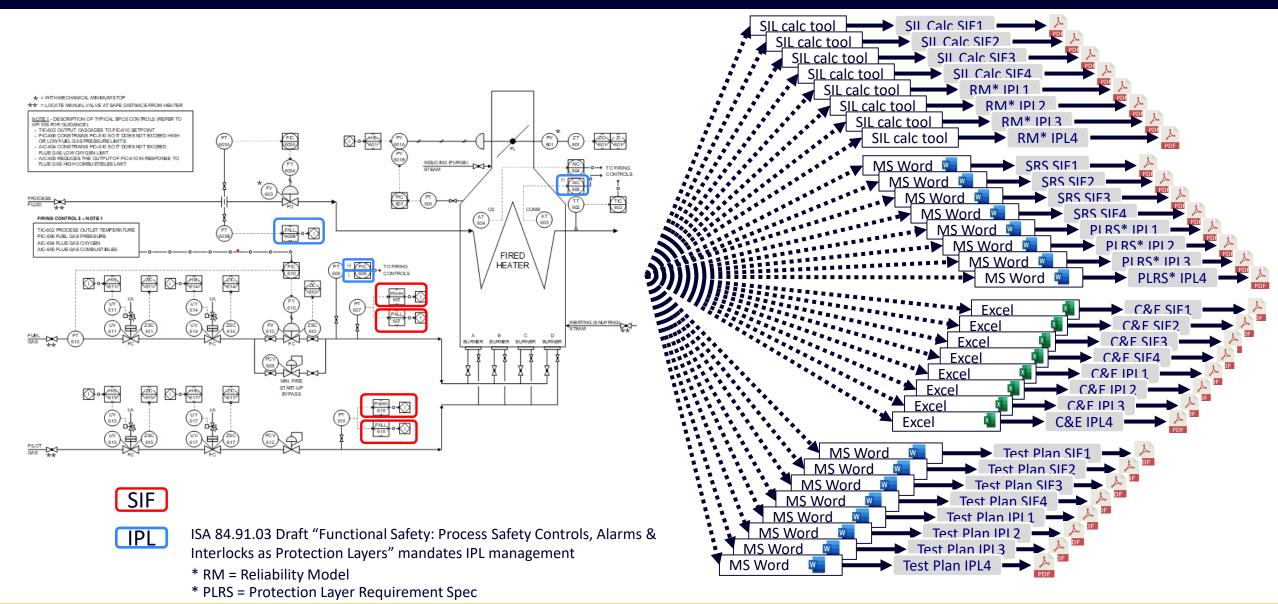
- Inconsistent consequence selection
- Incorrect SIF definitions
- Incorrect Cause / Consequence Pairings
- ▶ Too high of SIL targets e.g., SIL 3
- High Demand Mode selection
- Instrumentation Furnished with Packaged Equipment
- BMS / BPCS combined in a single logic solver as part of an OEM burner upgrade

Goal: Avoid your name and the words *critical path* being used in the same sentence!

Fired Device Risk Analysis Goals

- Consistency in Risk Ranking like Fired Equipment across the organization
- Consistency in SIF definition from site to site for like Fired Equipment
- Eliminate potential unnecessary spend to modify BMS related SIFs to meet over inflated RRF targets
- Eliminate potential increased risk associated with missing SIFs or SIL targets that are too low
- If any risk gaps are uncovered, end user can confidently make decisions on spend / gap closure knowing risk analysis has been approved by corporate SME and is consistent from site to site

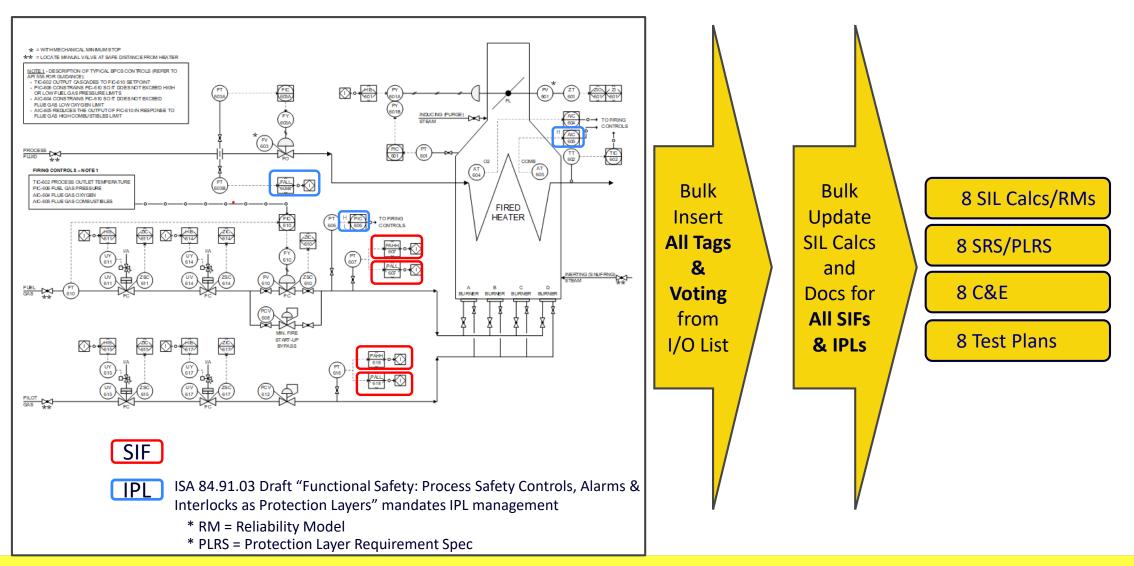
Develop Fired Device Guidance Notes


 Develop Guidance Notes on typical Fired Equipment in your organization

- Guidance Note to include:
 - Consequence Selection
 - Independent Protection Layer Guidance
 - Typical SIF definitions
 - Typical expected SIL targets
 - Typical SIS deliverables
 - Etc.

			Table 1 – Typical E	SMS Hazards and A	ssociated Saf	ety Iı	nstrumented	Functions				
SIF #		Hazard Description		Causes	Sensors	Final Elements		Additional Actions				
SIF- 001		Low combustion air flow causes unstable flame operation and loss of flame		 Combustion Air Fan failure Combustion air 	PSLL-103 or BSLL-311	or UV-308		 Open main vent valve (UV-307) Maintain combustion air 			3	
	Table 2 – Typical BMS Safety Integrity Level Calculations											
	SI	F #	SIF Description		Target S PFDavg Note 1		Test Interval	SIL Arch Constraints	Achieved SIL - Note	ı		
	SIF	-001		air flow or loss of flam fuel gas to combustion	e 2		12 Months	2	2			
	SIF	-002		Figure 7 – Typical BMS Gas Train								
		7-003 7-004				(P) MED			O-	- (8 Xr)	94158 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
L						Rico Co					6	

Document Centric Approach Multi-Burner Heater



Manually Enter Data For Each SIF/IPL To Comply with IEC 61511

Templatization Approach Multi-Burner Heater

Reduced Time to Complete IEC 61511 Docs from >40 hours to <1 Hour

End Goal of IEC 61511

9

Mike Scott, PE, CFSE CEO mike.scott@aeshield.com

Questions?