Hazards31

REAL CHARTER ADVANCING CHEMICAL ENGINEERING WORLDWIDE

Latest HAZOP Practice

James Fairburn, Process Safety Advisor, Chevron

Overview

Separate and discrete areas of latest HAZOP practice:

- 1. Severity Estimation and Conditional Modifiers
- 2. Maintaining HAZOP Evergreen
- 3. HAZOP of Similar Systems / Activities

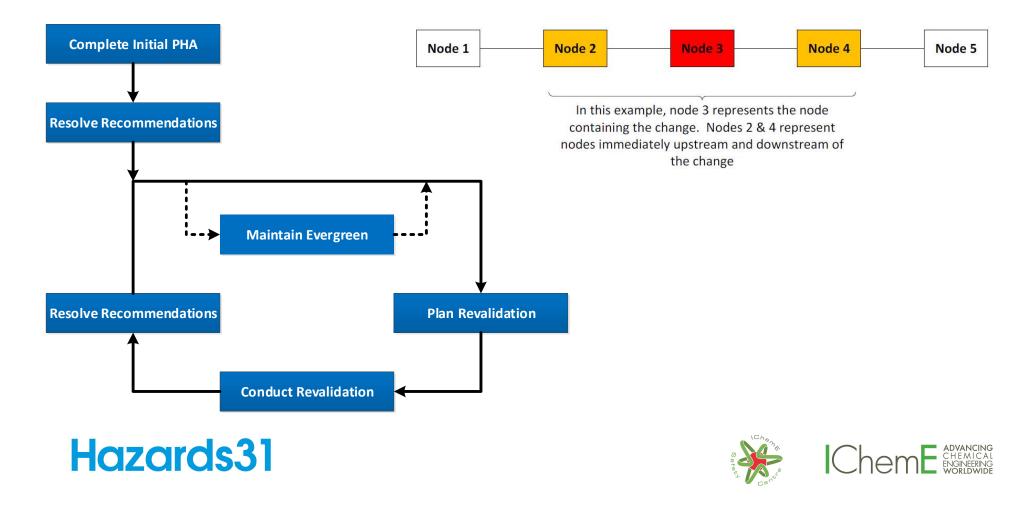
Are these common practice across industry?

Severity Estimation & Conditional Modifiers

- Risk Ranking supports decision to recommend risk reduction
- Formalised practice and tools reduces subjectivity
- Opportunity to leverage existing quantitative data:

HAZOP:	Cause	Consequence	Severity	Preventive Safeguards	Mitigative Safeguards	Conditional Modifiers
Consequence Modeling / QRA:	N/A	LOC	Extent + number of people exposed	N/A	F&G, ESD, Blowdown etc	lgnition, weather category, wind direction etc

How to Estimate Magnitude of Releases


- Predictable for operational activities such as draining/sampling
- For other scenarios, require guidance on worst credible consequences, equivalent hole sizes and 'Look-Up' tables...

Hole size (mm)						
Equipment typ	e LE	EVEL I	LEVEL II		LEVEL III	
	>1.0E-2/rel	ease source-yr	1.0E-2-1.0E-3/release sou	urce-yr 1.0E-3-1.0	1.0E-3-1.0E-4/release source-yr	
Single seal / throttle	e bush	2 5			10	
Double seal		1 2			10	
Fluid category	Release pressure bar(a)	Hazard radius R2 (m) Release hole diameter				
	Ddf(d)	1mm	2mm	5mm	10mm	
A	5	2	4	16	40	
	10	2.5	4.5	20	50	
	50	3	5.5	20	50	
	100	3	6	20	50	

Maintaining a HAZOP Evergreen: Concept

Maintaining a HAZOP Evergreen: Example

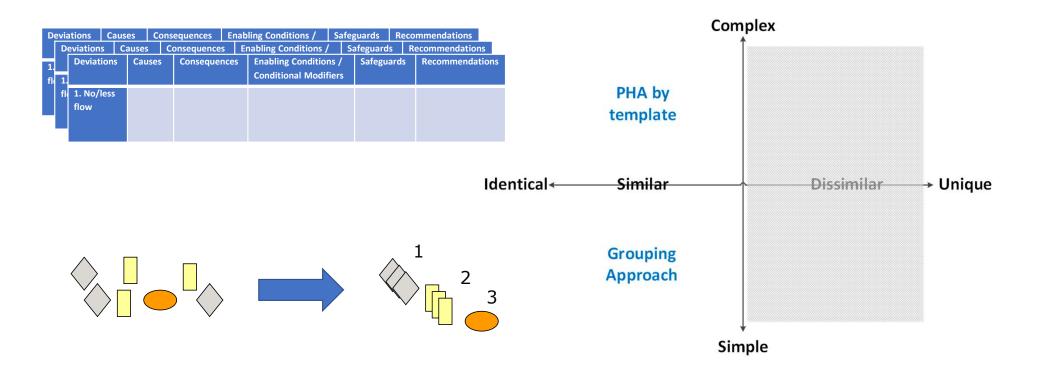
Deviations	Causes	Consequences	Enabling Conditions / Conditional Modifiers	Safeguards	Recommendations
1. High level	1. Failure	1. Tank overfill,	1. (TR1) Level gauge checked for successful	1. Independent high high level alarm,	1. Concern is gasoline tank
	of ATG	formation of large	operation on commencement of transfer.	annunciated in Central Control Room,	overfill, leading to large
	during	flammable cloud,	Proportion of time filling = 2/wk * 52wk/yr *	with operator response to terminate	flammable cloud. Provide
	filling	ignition,	8hr / 8760hr/yr = 9%	gasoline blending operation	additional safeguard(s) to
		fire/explosion,	2. (OT1) Probability calm & stable weather 5%,		mitigate scenario. One option is
		personnel impact	based on hourly average data from Met station		to install SIL1 automatic tank
					overfill protection system.

J

Deviations	Causes	Consequences	Enabling Conditions / Conditional Modifiers	Safeguards	Recommendations
1. High level	1. Failure	1. Tank overfill,	1. (TR1) Level gauge checked for successful	1. Independent high high level alarm,	[Recommendation becomes a
	of ATG	formation of large	operation on commencement of transfer.	annunciated Central Control Room, with	safeguard, risk ranking revised]
	during	flammable cloud,	Proportion of time filling = 2/wk * 52wk/yr *	operator response to terminate gasoline	
	filling	ignition,	8hr / 8760hr/yr = 9%	blending operation	
		fire/explosion,	2. (OT1) Probability calm & stable weather 5%,	2. SIL1 automatic tank overfill protection	
		personnel impact	based on hourly average data from Met station	system	
2. No flow	1. Spurious	1. Surge			[Additional scenario requires
	trip of	overpressure: valve			consideration]
	AOPS	closing against ship?			

Hazards31

Maintaining a HAZOP Evergreen: Learning


- Commercial HAZOP software packages generally aren't evergreen friendly
- Challenge for facilitator to focus team on the scope of the update
- Implementation of latest industry good practice likely to be more practicable for new equipment vs. existing
- Approach can become more complex where MOCs remain open at next revalidation or have been cancelled

None of these issues are unsurmountable

HAZOP of Similar Systems / Activities

PHA by Template: Shared Learning

- The templating approach takes the PHA completed for one system and uses it as starting point for studying similar system(s)
- Examples:

Parallel LNG liquefaction trains
Refinery crude process units

- Requires facilitator's skill to maintain team's focus
- Beware the extent of pre-population of scenarios, especially where systems not subject to same design

A rigorous facility-specific analysis always required

Hazards31

Grouping Approach: Shared Learning

- The grouping approach involves grouping of multiple systems/activities to perform a single, representative risk assessment
- Examples:

 \odot Service stations

○ Storage tanks

- Care required with size of grouping
- Field checklist can be developed to:
 - Confirm that underlying HAZOP is representative of other facilities/activities within grouping; and
 - \odot Perform field verification of safeguards identified

