

Experimental understanding of gas volumes and forces generated due to swelling during lithium-ion pouch cell failure

Gemma Howard

HSE Science and Research Centre, Buxton

About me

© Crown Copyright, HSE 2021

Test Facilities

- Open Field Abuse
 Chambers
- Pressure Vessel
- Accelerated rate calorimetry (ARC)

Battery Testing Capability

Over temperature

- External heat
- Flame impingement
- Accelerated rate calorimetry (ARC)

Electrical

- Overcharge
- Short circuit
- Cell cycling

Mechanical

- Nail penetration (open field or in a vessel)
- Water emersion
- Impact

Mitigation

- Passive and active fire protection testing
- Containment assessment

Gas and remnants analysis

- Real time gas analysis
- Gas quantity measurements
- Chemical and particle analysis

Cylindrical Cell

Pouch Cell

+ Any size or shape

BESPOKE RESEARCH AND

CONSULTANCY FROM HSE

- + High capacity cells available
- + Lightweight
- + Compact
- Less protected than hard cased cell

Pouch Cell Failure Mechanism

Pouch Cell Failure

Pouch Cell Failure

© Crown Copyright, HSE 2021

© Crown Copyright, HSE 2021

Example of Failures

Samsung Galaxy Note 7

Reports of fires as a result of batteries overheating.

The overheating was due to manufacturing faults.

Pouch Cell Pressure Measurement	Gas Volumes and Analysis
 Measurement of maximum pressure generated as a result of swelling during an external heat test 	 Gas volumes released during venting/ failure in single cell and cell block tests
 Gap above cell for expansion varied (none, 1mm and 2mm) 	 Gas % volume of select gases in nitrogen and air atmosphere

Abuse Method: External Heat State of Charge: 50% or 100% Number of Cells: 1

© Crown Copyright, HSE 2021

Pressure Measurement Calculations

The internal pressure produced by the cell was calculated by:

Converting the mass recorded to a force

Force (N) = Mass (kg) x Acceleration (gravity, 9.806 m/s²)

Using the force to calculate the pressure

Pressure (Pa) = Force (N) / Area (0.0054 m^2)

Pressure (Pa) was converted to kPa

Pressure Measurement Results

Pressure increase up to venting / failure

© Crown Copyright, HSE 2021

Gas Volume and Analysis Test Design

Abuse Method: External heat

State of Charge: 100 %

Number of Cells: 1 or 4

Atmosphere: Nitrogen or air

All test carried out in 46 L, 10 bar rated pressure vessel

Cell Failure Nitrogen vs. Air Atmosphere

Pressure and temperature

BESPOKE RESEARCH AND

CONSULTANCY FROM HSE

Ambient temperature, pressure and pressure vessel volume used to calculate moles of gas:

Moles of gas = Pressure (Pa) x Volume of vessel (L)

Ambient temperature (K) x 8.314

Moles of gas used to calculate final gas volume under standard conditions (25 °C, 1 atm)

Test Number	Atmosphere	Number of Cells	Gas Volume (I)	Average Volume (I)
11			4.7	
12	Air		4.9	4.3
13		1	3.2	
14			6.0	
15	Nitrogon		6.4	6.5
16	nitrogen		7.1	
17		4	31.4	31.4

Gas Composition Single Cell

% Volumes for key gases

- Air smaller volume of gas than nitrogen atmosphere
- Higher % volume of carbon dioxide produced in air atmosphere
- Higher % volume hydrogen in nitrogen atmosphere
- Higher % volume of small hydrocarbons in nitrogen atmosphere
- Approximately 5 times greater gas volume for cell block compared with single cell in nitrogen atmosphere

- Considerable force exerted by swelling of cell
- Significant volumes of gas produced, mostly flammable

Any questions? Gemma.howard@hse.gov.uk

HSE Staff

- Jonathan Buston
- Jason Gill
- Dan Howard
- Rhiannon Williams
- Elliott Read
- Steve Goddard
- Katie Abbott
- Keith Tremble

