

Demystifying mist explosion hazards

Stephanie El - Zahlanieh, Idalba Souza Dos Santos, Hugo Tostain,

Alexis Vignes, Olivier Dufaud, Simon Gant

OUTLINE

Introduction

- Whilst hazardous area classification of flammable gases and dusts is well established in ATEX, DSEAR, and EPS directives, the classification of aerosols is less clear
- When aerosolized, liquids can ignite and give rise to explosions at temperatures well below their flashpoint
- Santon (2007) review: 20 explosions, 29 fatalities
- Lees et al. (2019): 25 reported mist incidents over 2 year period on UK offshore platforms

The necessity to acquire full knowledge and ability in order to classify hazardous mist explosive areas **Hazards31**

Fuel Selection

(

0

€

0

Fuel Selection

	Diesel	Biodiesel B100	Light Fuel Oil	
Flashpoint (°C)	> 55	> 300	> 55	
Density (kg.m ⁻³)	150 - 380	> 350	150 - 380	
Kinematic viscosity (mm².s ⁻¹)	2 – 4.5 @ 40 °C	65 @ 20 °C	< 7 @ 40 °C	
Surface tension (kg.s ⁻²)	0.0275	0.0312	0.025	
HSE release class	Release Class I More volatile / Less atomizing	Release Class III/IV Less volatile / Less atomizing	Release Class I More volatile / Less atomizing	

Mist Generation and Characterisation

Mist Generation and Characterization

Venturi-based twin-fluid injection system

- Control of the temperature and pressure of the liquid reservoir
- Variation of the air injection pressure, injection time, nozzle air and fluid cap
- Control of the DSD, average concentration, fuel/air ratio

	Diesel	LFO	Biodiesel
Mass flow rate (g.s ⁻¹)	0.31	0.32	0.24

Mist Generation and Characterization

Droplet Size Distribution (DSD)

- o In-situ laser diffraction sensor
- $_{\odot}\,$ Time evolution of the DSD
- Mean and representative diameters such as d₁₀, d₅₀, d₉₀, and SMD
- Optical concentration

Turbulence level

Characterizati

- Particle Image Velocimetry (PIV)
- \circ Nd:YAG laser, λ = 532 nm
- o PIVIab 2.45
- o Horizontal and vertical fluctuations → root-mean-square velocity v_{rms}

Hazards31

DSD of diesel mists under atmospheric condition at $P_{inj} = 3$ bar

D ₁₀ (µm)	SMD (µm)	D ₅₀ (µm)	D ₉₀ (µm)
7.8	9.5	9.7	11.9

PIV results of diesel mists under atmospheric condition at $P_{ini} = 3$ bar

t _v (ms)	3	60	200	400	600	800	1000
V _{rms} (m/s)	1.78	0.9	0.68	0.59	0.46	0.29	0.28

Ignition Sensitivity and Explosion Severity

- \checkmark Modification of the standard 20 L sphere
- \checkmark Installation of the mist generation system
- ✓ Control of inlet flowrates as well as the liquid / air ratio by 2 electronic valves
- ✓ Partial vacuuming of the sphere before injection
- ✓ Control of the system as well as the data acquisition
- Control of the sphere's temperature by a water jacket
- ✓ Use of 100 J chemical ignitors or spark ignition
- ✓ Result: the explosion overpressure P_{ex}, the explosion rate of pressure rise dP/dt_{ex}, the lower explosive limit LEL, and the minimum ignition energy MIE

Influence of the ignition delay time

Influence of the ignition delay time t_v on both P_{ex} and dP/dt_{ex} at $T = 40^{\circ}$ C and diesel mist concentration of 123 g.m⁻³

- \circ P_{ex} and dP/dt_{ex} decrease as t_v increases
 - → Sedimentation and decrease of average mist concentration
 - → Decrease of the root-mean square velocity
 - → A more noticeable decrease of dP/dt_{ex} showing the influence of the turbulence level on the flame propagation and the kinetics of the combustion reaction

Influence of the initial sphere temperature

- \circ Increase in fuel vapour phase \rightarrow decrease in LEL
- Noticeable influence on dP/dt_{ex} \rightarrow influence on the combustion reaction kinetics and the growth of the initial flame kernel

Influence of the initial sphere temperature

Influence of the diesel mist concentration on P_{ex} and dP/dt_{ex} with and without preheating the fuel before injection, $T_{sphere} = 80^{\circ} C$

Three-Fuel Comparison

Comparison of the explosivity of diesel, LFO, and biodiesel at T = 40 $^{\circ}$ C

- o Different explosivity behaviours depending on the liquid properties and ambient conditions
 - → Potential to develop different testing protocols based on liquid properties providing incident prevention and protection means

Minimum Ignition Energy & Lower Explosive Limit

	LEL _{T = 30 °C}	LEL _{T = 40 °C}	LEL _{T = 60 °C}	LEL _{T = 80 °C}
Diesel	123.4	92.5	77.1	77.1
LFO	-	97.3	97.3	81.1
Biodiesel	-	-	103	91

Evaporation Model

Evaporation Model

• The d²-law: a simplified model of droplet evaporation

 $d^2 = d_0^2 - \mathbf{K}t$

• Turbulent mist cloud:

$$K = 8D \frac{\rho}{\rho_l} \ln(1 + B_T) \left(1 + 0.0276 R e^{\frac{1}{2}} S c^{\frac{1}{3}} \right)$$

• Heat transfer Spalding number with combustion:

The vapour/LEL ratio (the threshold value is set at 1) as a function of the initial temperature and droplet size for a 2.5 g diesel mist cloud (125 g.m⁻³) with a 3 ms ignition delay time

Dimensionless Numbers and Liquid Classification

Dimensionless Numbers & Liquid Classification

Reynolds number	Ohnesorge number	Spalding number	Stanton number	Nusselt number
Liquid density	Liquid viscosity	T _{liquid}	Convection coefficient	Convection coefficient
Liquid viscosity	Surface tension	T _{sphere}		Thermal
SMD	Orifice	Heat capacity	Heat capacity	conductivity
Turbulence	ulumeren	Heat of vaporization	Air density	SMD
Air vis	scosity	Injection pressure	Vapour fraction	
DSD	Initial pressure	Elash point		Flow rate
Hazarc	Is31			ICheme ADVANCING CHEMICAL ENGINEERING WORLDWIDE

- The presence of various dimensionless numbers and correlations allowing to study the influence of different parameters on the DSD, the flammability, and the explosivity of hydrocarbon mists
- Potential to develop new test protocols based on combining ignition and explosion risk (using dimensionless numbers) with HSE classification system

Conclusion

- The lack of knowledge present in the field of mist hazards was addressed by providing new scientific data to support mist risk assessment
- ✓ The strong influence of the initial operating conditions (specifically the initial temperature and turbulence level) on the safety parameters of hydrocarbon mists was demonstrated
- ✓ MIE values were shown to be in the range of 200 350 mJ for diesel mists at T = 40 °C
- ✓ LEL values of about 92 and 97 g/m⁻³ for diesel and light fuel oil mists respectively were found
- Possibility to characterize the ignition sensitivity and explosion severity of hydrocarbon mists with only one set-up

THANK YOU!

Contact Information:

Stephanie El – Zahlanieh <u>stephanie.el-zahlanieh@univ-lorraine.fr</u> https://www.linkedin.com/in/stephanie-el-zahlanieh-420689144/

Acknowledgment

The contribution by Simon Gant to this work was funded by the Health and Safety Executive (HSE). The contents, including any opinions and/or conclusions expressed, are those of the authors alone and do not necessarily reflect HSE policy.