Investigation into a Microbiologically Induced Corrosion (MIC) failure of an onshore pipeline

Keith Birkitt CEng MWeldI FIMMM, Principal Materials EngineerAneta Nemcova PhD MIMMM, Materials ScientistIan Chapman CEng MIMechE, Mechanical Engineering Inspector

16th, 17th, 18th November 2021

Introduction

- Pipeline Degradation Mechanisms
- Microbiological Induced Corrosion
- Detecting MIC
- Onshore MIC Incident
- In-Service Monitoring

Pipeline Degradation Mechanisms:

External:

- Atmospheric corrosion, especially in coastal and industrial locations
- Crevice corrosion, e.g. under pipe supports \bullet
- **Galvanic corrosion** \bullet
- Stress Corrosion Cracking (SCC) •
- **Corrosion under insulation (CUI)** \bullet
- **Microbiological Induced Corrosion (MIC)** \bullet

Pipeline Degradation Mechanisms:

Internal: Erosion-corrosion/cavitation Galvanic corrosion CO₂ corrosion Stress Corrosion Cracking (SCC) Microbiological Induced Corrosion (MIC)

Understanding the mechanisms appropriate to the operating conditions is an important part of the asset management programme.

Microbiological Induced Corrosion (MIC)

- Caused by living organisms: bacteria, algae, fungi •
- **Occurs in low flow or stagnant environments** •
- Fast flow tends to flush away the offending species •
- temperatures ranging from -17 °C to +113 °C
- Different organisms thrive on different nutrients e.g. sulphur, ammonia, H₂S, hydrocarbons and organic acids \bullet
- Require a source of carbon, nitrogen and phosphorous for growth \bullet
- •

MIC caused by a variety of organisms under severe conditions of light/dark, high salinity, low to moderately high pH, and

Can be found in heat exchangers, bottom of storage tanks, stagnant/low flow pipework and pipework in contact with soils

Mechanism of MIC

- Micro-organisms create acids as a by-product of their existence •
- Sulphate reducing bacteria (SRB) are responsible for the majority • of failures and live in oxygen-free environments
- Often characterised by deep pits, e.g. carbon steel pipelines •

Detection

Various methods:

- **Culture-based testing** •
- **Optical microscopy, such as DAPI (4-6-diamidino-20phenylindole)** \bullet
- FISH (Fluoresce in situ hybridisation) •
- DNA analysis such as qPCR (Quantitative Polymerase Chain Reaction) •
- ATP (Adenosine Triphosphate Photometry) •

NACE document TM0212-2018

Onshore Incident

- Loss of containment of 450 m³ liquid • hydrocarbon and water mixture
- 6 inch (150 mm) diameter pipeline •
- Pipework normally dormant, however • temporary re-routing of pipe flow required

Methodology

Two sections of pipe retrieved:

- Incident the section which leaked
- Non-incident an adjacent length of pipe with multiple repair clamps •

Decontamination on site

Visual examination

Material analysis: ICP OES of pipe material

XRD of solid pipe contents

Metallography

Hardness testing

Laser scanning to measure wall thickness and identify wall thinning Micro-biological analysis by qPCR to determine:

- Total (live and dead) bacteria
- Presence of SRB (sulphate reducing bacteria)
- **Presence of SRA (sulphate reducing archaea)** \bullet

Hazards31

Eta HSE

Results and Discussion

Visual examination

- Evidence of a steam heating pipe
- Six repair clips
- Wall thickness 5mm in non-corroded areas (originally 7 mm)
- Evidence of previous painting
- External corrosion and spalling
- Perforations at 6 o'clock position

Visual examination

- a. Paint on non-incident pipe
- b. Incident pipe external corrosion
- c. Drain on non-incident pipe
- d. Defect associated with loss of containment
- Defects under the clips were close to joining up

Liner condition

Internal examination

- Pipes cut longitudinally at 3 and 9 o'clock position: •
- Significant internal deposit of solid debris and corrosion • product
- Internal and external corrosion evident •

Materials analysis

- ICP OES revealed analysis consistent with API 5L grade B steel
- XRD of deposits revealed SiO₂ (silica) and FeCO₃ (siderite) – i.e. sand and corrosion products of iron

Element	Incident pipe	Non-incident pipe	API 5L grade E
Carbon	0.16	0.14	Max.0.26
Silicon	0.19	0.17	-
Manganese	0.60	0.68	Max.1.15
Phosphorou S	0.017	0.021	Max. 0.04
Sulphur	0.029	0.035	Max. 0.05
Chromium	0.05	0.04	-
Copper	0.23	0.15	-

Metallography

- Ferrite/pearlite microstructure consistent with the chemical analysis
- Hardness of 136 HV10 (incident pipe) and 130 HV10 (non incident pipe)
- Equivalent ultimate tensile strengths (UTS) of 430 MPa and 415 MPa
- Metallography and UTS consistent with API 5L grade B

Incident pipe

Non-incident pipe

Laser scanning

- Pipe scan images, a) and b) rotated anti-• clockwise through 90 °
- **1m lengths of incident pipe** •
- Hole at 6 to 8 o'clock •
- Steam pipe at 4 o'clock •

Laser scanning

- Pipe scan images, a) and b) rotated anticlockwise through 90 °
- 1m lengths of non-incident pipe
- Holes pits and groove at 6 o'clock

Microbiological analysis

- Three swabs from each pipe from internal surface were taken for qPCR, SRB and SRA
- by decontamination?
- Other swabs showed elevated levels of SRB on non-incident pipe and moderate levels of SRA
- Total bacterial load of 2.0 x 10⁶ cells/cm² on non-incident pipe.
- SRB: 2.5 x 10⁴ cells/cm²
- SRA: 1.2 x 10³ cells/cm²
- Believed to be conservative due to decontamination •

Hazards31

• Two samples from incident pipe near through wall defect showed insufficient DNA for further analysis – possibly affected

In-service monitoring:

- Dutyholders should be mindful of the possibility of MIC in \bullet pipelines tanks and vessels
- In-service monitoring techniques are detailed in • NACE TM0212-2018
- Use KPIs aligned to the system under review • e.g. use microbial monitoring data in conjunction with corrosion data
- High ATP or qPCR tests do not necessarily indicate MIC •
- Sample over a period of time to gain statistical reliability \bullet
- **Consider corrosion test coupons** \bullet
- If MIC is identified, use mitigation measures and continue monitoring •

Conclusions

- Pipeline material was consistent with API 5L grade B \bullet
- Both pipes showed extensive corrosion, paint spalling and significant localised internal and external wall thinning
- Size of defect associated with leak was 73 x 55 mm
- vegetation etc.
- Temporary repair clips should be short term. Holes were close to joining up •
- atmospheric corrosion due to a lack of a protective paint, and possibly CUI

Hazards31

Corrosion at 6 o'clock is common on unprotected steel pipework due to damp conditions caused by shade, poor airflow,

• The micro-biological load was significant and contributed to failure by MIC, along with other corrosion mechanisms –

Thank you for listening

Email: <u>keith.birkitt@hse.gov.uk</u> aneta.nemcova@hse.gov.uk ian.chapman@hse.gov.uk

Disclaimer: The contents of this presentation, including any opinions and/or conclusions expressed, are those of the authors alone and do not necessarily reflect HSE policy

