Hazards31

Detailed Analysis of Temperature and Pressure Behaviour During Reaction Runaway for Vent Sizing

Yuto Mizuta¹⁾²⁾, Motohiko Sumino¹⁾, Hiroaki Nakata¹⁾ Yuichiro Izato²⁾, Atsumi Miyake²⁾

¹⁾ Safety Engineering Technology Development Office, Mitsubishi Chemical, Japan

²⁾ Yokohama National University, Japan

The features of ISO and actual process IChemE advancing chemical engineering worldwide **ISO** method (a) Max. generation rate (a) The most violent runaway reaction starts from at initial liquid level Max. Liquid level (b) Assumed confined equipment (b) The influence of release from exhaust line? Exhaust **Actual processes** line (a) Liquid decrease during runaway reaction (b) Many equipment are unconfined Hazards31

Model Process for dynamic simulation

MEKPO thermal explosion incidents in Japan, Taiwan, Korea and China

Date	Country	City	Injuries	Fatalities
1964	Japan	Tokyo	114	19
1978	Japan	Kanagawa	0	0
1979	Taiwan	Таіреі	49	33
1996	Taiwan	Taoyuan	47	10
2000	Korea	Yosu	11	3
2001	China	Jiangsu	2	4
2003	China	Zhejiang	3	5

Thermal Hazard Simulations for Methyl Ethyl Ketone Peroxide Induced by Contaminants Jo-Ming Tseng, Korean J. Chem. Eng., 22(6), 797-802 (2005)

古積博,事故・災害事例とその対策,安全工学会,p.67

Definition of reaction rate

ADVANCING CHEMICAL ENGINEERING WORLDWIDE

Arrhenius type equation with thermal conversion by ARSST test

$$\frac{dr}{dt} = \frac{d}{dt} \left\{ n_0 \Big|_{MEKPO} \left(1 - \frac{T - T_0}{\Delta T_{\text{max}}} \right) \right\} = A_{pre} \exp\left(\frac{-Ea}{RT}\right)$$

Hazards31

Runaway reaction in the reactor

Runaway behavior on flow regime and estimated vent size

Flow regime for occurrence of two-phase flow 1.0 two-phase flow ▲ ISO method 0.9 O Detailed model Critical filling thresohld 0.8 gas flow 0.7 0.6 0.5 (9.4 0.3 00000 Progression of reaction 0.2 0.1 0.0 0.1 100 10 1000 Dimentionless bubble-rise velocity (-)

Hazards31

Cher Length: **MEKPO** 3m Reactor Diameter:1.5m Analysis method Vent size [m] **ISO** method 1.9 Detailed model 0.5

Considering liquid decrease gives reasonable vent size

Comparison of gas and vapor generation rate

In detailed model, liquid did not release for comparison to ISO

Flow regime for occurrence of two-phase flow

Hazards31

	ISO method	Detailed model
Gas generation	79	64
rate [kg/sec]		
Vaporization	-	320
rate [kg/sec]		
Vent size	1.9	3.1
[m]		

ISO-ARSST not considering vaporization rate could underestimate vent size

No liquid release

Vent sizing considering exhaust gas line

	Confined	with exhaust
	reactor	gas line
Max.	315	339
temperature		
[°C]		
Gas generation	19	56
rate [kg/sec]		
Vaporization	129	238
rate		
[kg/sec]		
Vent size [m]	0.5	0.7

Hazards31

All vaporization of solvents leads to concentrate reactive chemicals and required vent size was larger

Summary and future work

<u>Summary</u>

- Detailed model considering liquid decrease and exhaust gas line is developed
- Considering liquid decrease gives reasonable vent size
- ISO-ARSST not considering vaporization rate could underestimate vent size
- All vaporization of solvents leads to concentrate reactive chemicals and required vent size was larger

Future work

- Small-scale runaway reaction experiment
- Enhance for monomer and foamy substances

Hazards31

Thank you for your attention!

Yuto Mizuta

mizuta.yuto.ma@m-chemical.co.jp

Safety Engineering Technology Development Office, Mitsubishi Chemical, Japan

