
Hazards31

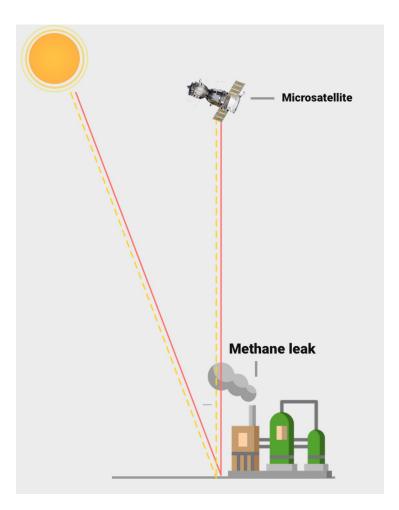
AZA ICHAZA ADVANCING CHEMICAL ENGINEERING WORLDWIDE

The application of GHGSat data to improve the detection of methane leaks and the integration opportunities with plant sensor data

Presenters: Ian Spence, GHGSat, Inc. Darren Steele, Consultant

Acknowledgements: Seeq Corporation GHGSat Inc. IT Vizion Inc.

1500


1000

500

Agenda

1. Introduction

- 2. Greenhouse Gas Emissions (Methane) Monitoring from Space
- 3. Real world examples of Methane Leak Detection
- 4. Integrating Satellite data with plant data

Why Methane Matters

- 1. Methane has a great impact on climate change
- 2. Methane is hazardous (Explosion & Asphyxiation)
- 3. Abundant in Nature, present in landfills and sewage treatment works
- 4. Main component of Liquefied Natural Gas (LNG) and Compressed Natural Gas (CNG
- 5. Business as usual = methane leaks can go undetected for hours, days... and months

'Record methane levels pose new threat to Paris Climate accord' Leslie Hook, Financial Times, 2019

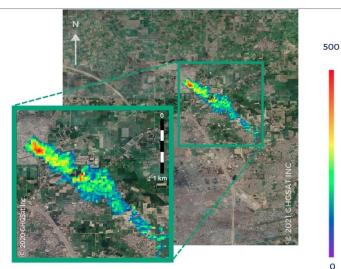
Ingredient for high potential incidents

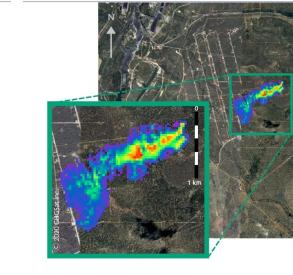
- 1. June 9, 2009, **4 workers killed** and **sixty seven (67) others injured** in natural gas explosion, ConAgra Foods Slim JimTM processing facility, Garner, North Carolina. (CSB, 2009)
- 2. February 7, 2010, **6 workers killed** and at least **fifty (50) others injured** in natural gas explosion at the Kleen Energy power plant , Middletown, Connecticut. (CSB, 2010)
- 3. April 20, 2010, **11 workers died** on the Macondo Platform when a methane gas release triggered a deadly explosion (ISBN: 978-0-16-087371-3)
- 4. February, 2018, The New York Times reported a gas-well accident at an Ohio **fracking site** and claimed that it resulted in one of the **largest methane leaks ever recorded** in the United States (Hiroko, 2019), a claim supported by satellite measurements of the incident (Pandey, 2019).
- September, 2021, The Chemical Engineer, reported high methane emissions from the coal-mining Boen Basin in Australia with an average methane release of 1.6 m t/y in 2019 and 2020, equivalent to 134m t/y of CO2. (TCE, 2021)

Global Emissions Monitoring

GHGSat operates its own satellites and aircraft to detect and quantify methane emissions from industrial facilities around the world

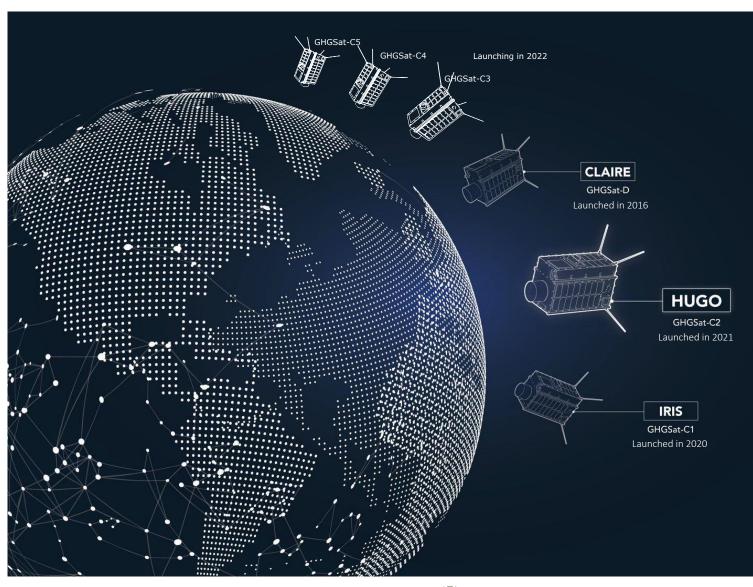
O&G - USA CH₄ Measurement


Landfill - Asia CH₄ Measurement


Coal Mine - Australia CH4 Measurement

ENHANCEMENT ABOVE BACKCROUND (ppb)

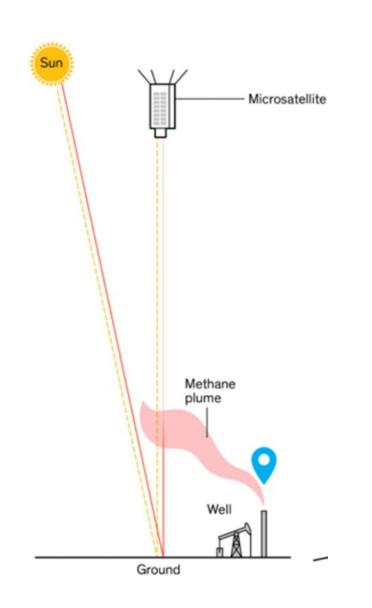
125



ENHANCEMENT ABOVE BACKGROUND (ppb

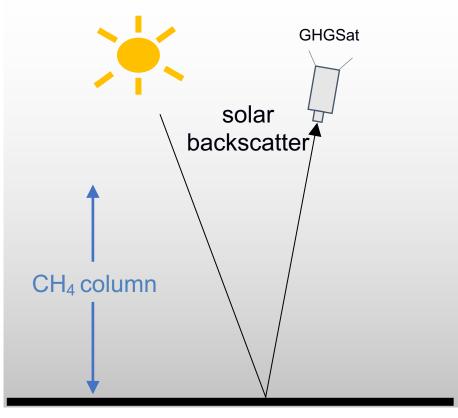
Growing satellite fleet

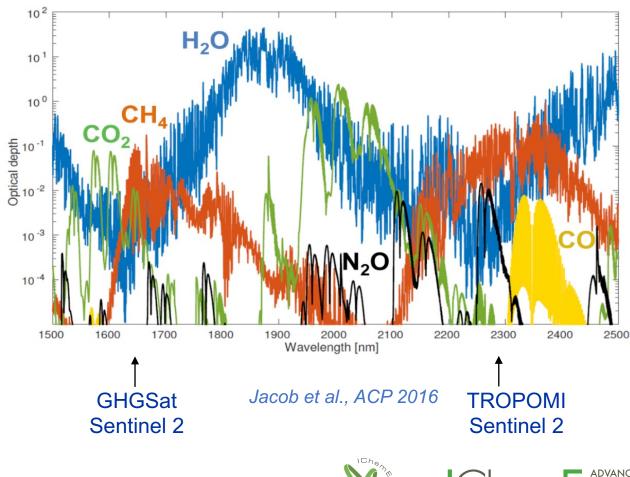
- "Claire" demonstrator
 - GHGSat-D launched 2016
- First commercial satellites
 - Iris, launched Sept 2020
 - Hugo, launched Jan 2021
- Next batch being built
 - Three satellites launch 2022
 - GHGSat-C3, C4 and C5
- Total 10 satellites in 2023


Hazards31

Chem

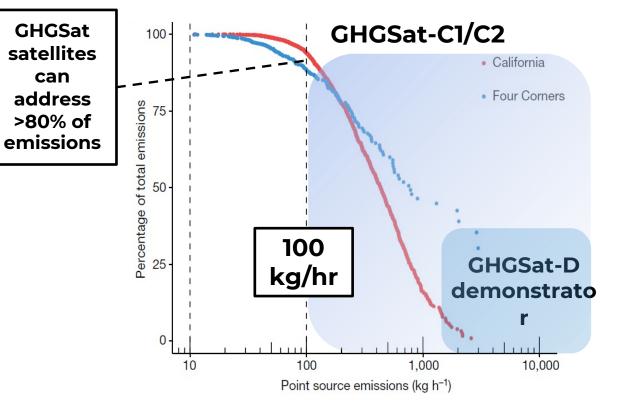
- 1. Rapidly available with minimal delay and no need to be on site
- 2. Comparable measurements anywhere worldwide able to detect large leaks fast
- 3. Enables regular and sustained monitoring at an affordable cost





Methane Imaging in Short-wave Infrared (SWIR)

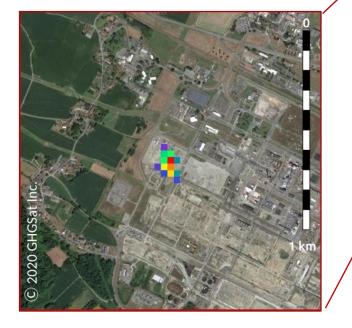
Measure absorption by methane column between sensor and ground Hazards31

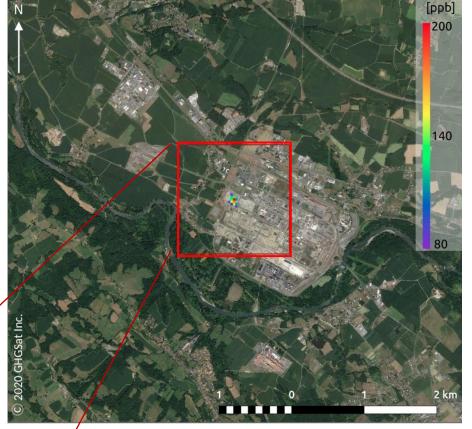


Relevance of satellite methane measurements

- "Super emitters" drive total emissions
 - Majority of methane emissions from relatively few larger sources
 - Satellite detections can address significant proportion of all emissions
- Satellite view of point sources
 - Detection threshold >100 kgCH4/hr
 - High spatial resolution (25 m) enables source attribution
- Aircraft sensor extends insights
 - Detection threshold >10 kgCH4/hr
 - Very high resolution (better than 1 metre)

Plot from Duren, R. M. *et al.* California's methane super-emitters. *Nature* 575, 180–184 (2019). GHGSat annotations.



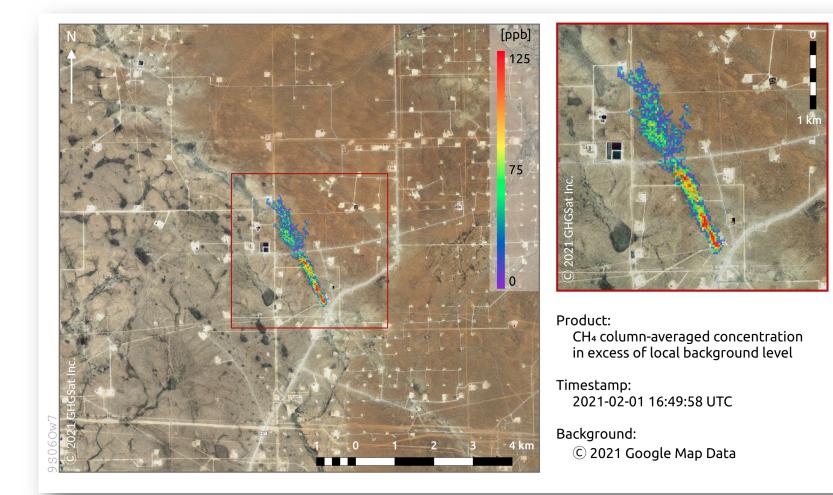


Case study – Blind controlled release

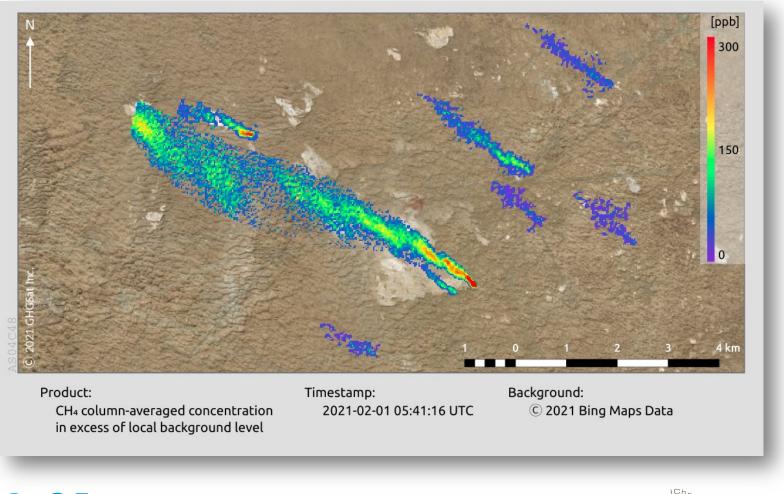
"In developing the technical solutions of tomorrow to monitor methane emissions, TotalEnergies uses its TADI facility to validate emerging technologies on the market, notably those selected by OGCI Climate Investments."

Blind controlled release in partnership with TotalEnergies in France (October 2020).

GHGSat had no knowledge of release rate or position

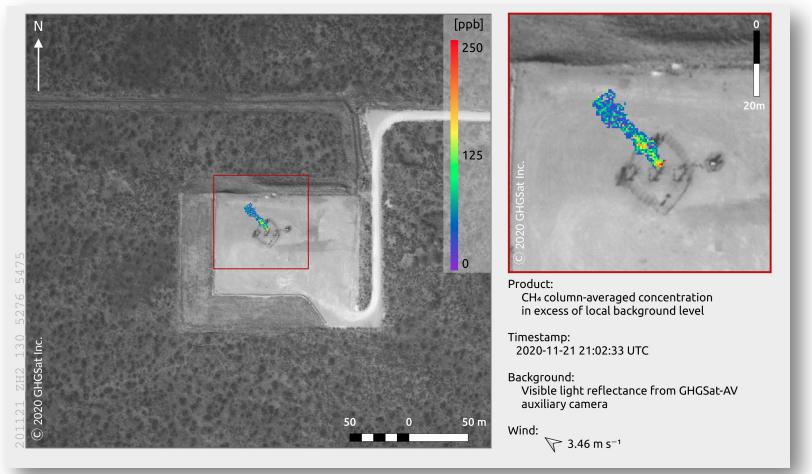

- Our retrieval: 250 ± 140 kg/hr
- Ground truth: 234 kg/hr
- Wind 1.6 m/s

Oil and gas facility – Permian Basin, USA



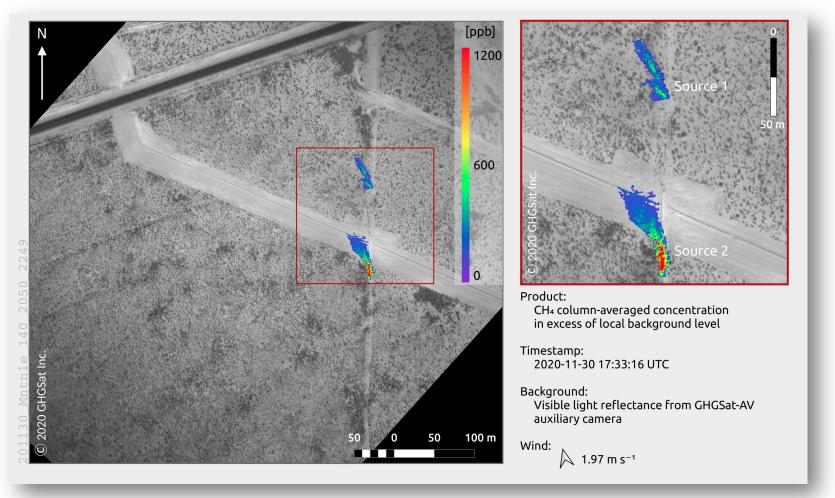
Pipelines & unlit flares – Central Asia

©2021 GHGSat Inc

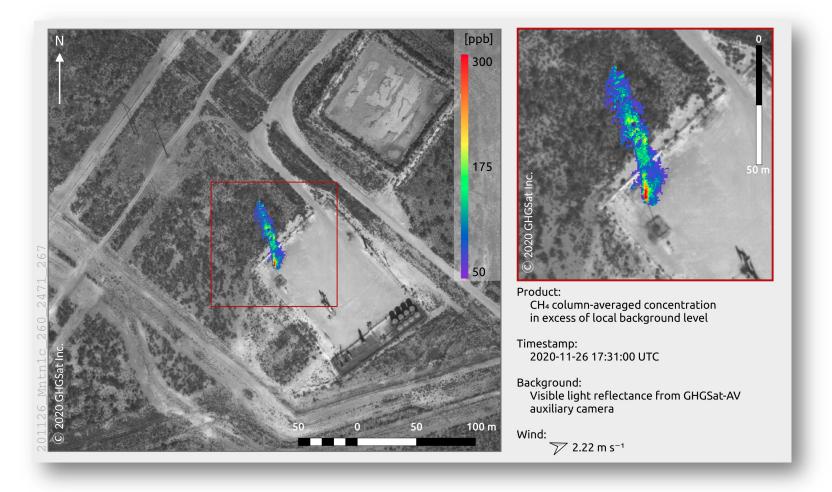

Hazards31

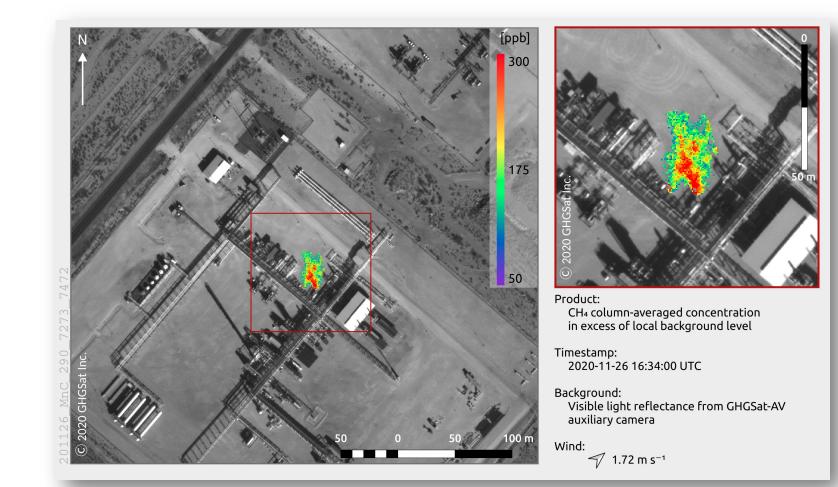
https://www.bloomberg.com/news/articles/2021-02-12/new-climate-satellite-spotted-giant-methane-leak-as-it-happened

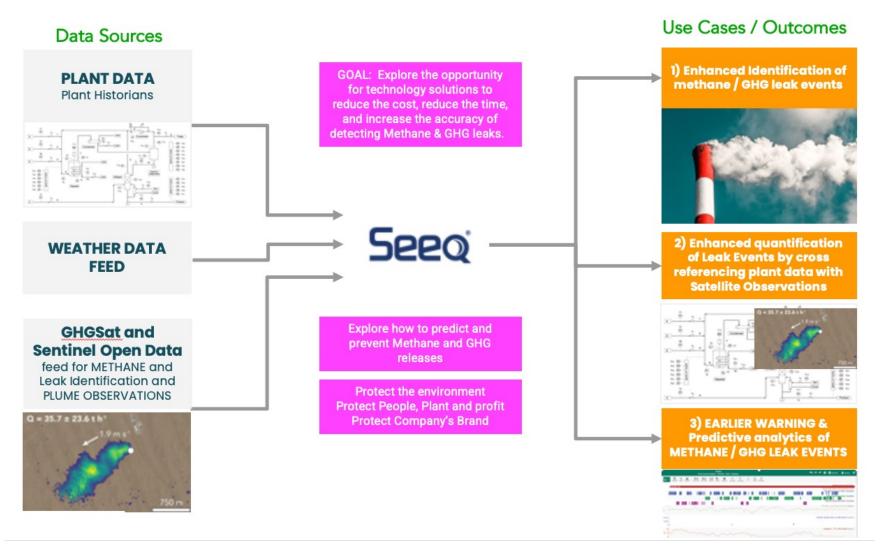
Well head – Delaware Basin, USA



Gathering line – Delaware Basin, USA




Flare stack – Delaware Basin, USA


Gas plant – Delaware Basin, USA

Integrating Plant Data With Space Data

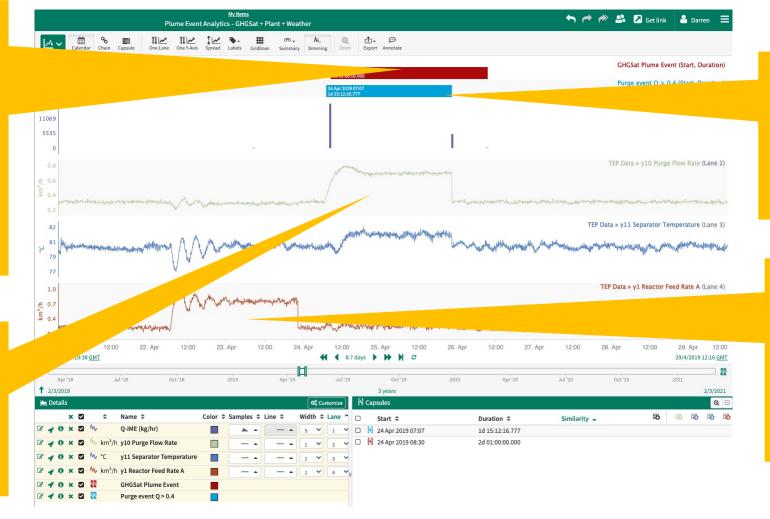
Methane Plume Events from Simulated GHGSat data

				024040			11 225				
Observation ID	File Basename	Country	Acquisition time [UTC]	WGS-84 Latitude [00]	WGS-84 Longitude [∞]	UTM Easting [m]	UTM Northing [m] UTM Zone	Q-IME [kg/hr]	Q-IME Error [%] So	rce # Varon 2019 Event V	/aron 2019
1BEVxRS	GDSW1_SON1BEV#RS200717_CON1611280025_COLN01_TIFF	Canada	22/02/2018 18:10	53.911944	-117.2750095	481935	5973759 11 N	9100	100%+		
1D17F1K	GDSW1_SON1D17F1K200717_CON0018000445_COLN01_TIFF	Turkmenistan	19/05/2018 06:29	38.49391	54.19763	255596	4264340 40 N	11600	76%	1 a	
1DwXF1K	GDSW1_SON1DwXF1K200717_CON0018000445_COLN01_TIFF	Turkmenistan	15/08/2018 06:29	38.49391	54.19763	255596	4264340 40 N	9900	69%	1 b	
1ED4F1K	GDSW1_SON1ED4F1K200717_CON0018000445_COLN01_TIFF	Turkmenistan	03/09/2018 06:28	38.49391	54.19763	255596	4264340 40 N	43300	27%	1 c	
1EXXk1K	GDSW1_SON1EXX1K200717_CON0018000445_COLN01_TIFF	Turkmenistan	22/09/2018 06:27	38.49391	54.19763	255596	4264340 40 N	33400	48%	1 d	
1FGXF1K	GDSW1_SON1FGXF1k200717_CON0018000445_COLN01_TIFF	Turkmenistan	08/11/2018 06:30	38.49391	54.19763	255596	4264340 40 N	30450	84%	1 e	
1GD0k1K	GDSW1_SON1GD0:1K200717_CON0018000445_COLN01_TIFF	Turkmenistan	13/01/2019 06:26	38.49391	54.19763	255596	4264340 40 N	25450	62%	1 g	
1GD0k1K	GDSW1_SON1GD0x1K200717_CON0018000445_COLN01_TIFF	Turkmenistan	13/01/2019 06:26	38.4992	54.2174	257339	4264874 40 N	33600	61%	2 g	
2GWXk1K	GDSW1_SON2GWXk1K200717_CON0018000445_COLN01_TIFF	Turkmenistan	27/01/2019 06:27	38.49391	54.19763	255596	4264340 40 N	37850	48%	1 f	
2GWXk1K	GDSW1_SON2GWXk1K200717_CON0018000445_COLN01_TIFF	Turkmenistan	27/01/2019 06:27	38.55947	54.20253	256245	4271603 40 N	2700	67%	3 h	
1De0Xvv	GDSW1_SON1Dz0Xvv200717_CON0018000483_COLN01_TIFF	USA	17/08/2018 16:53	31.687004	-103.7251805	620825	3506449 13 N	1750	66%	1917.01	
							provide the Cold Cold Party of				
O. Courses Darks											

Q: Source Rate IME: Integrated Mass Enhancement

> Observation Timestamp

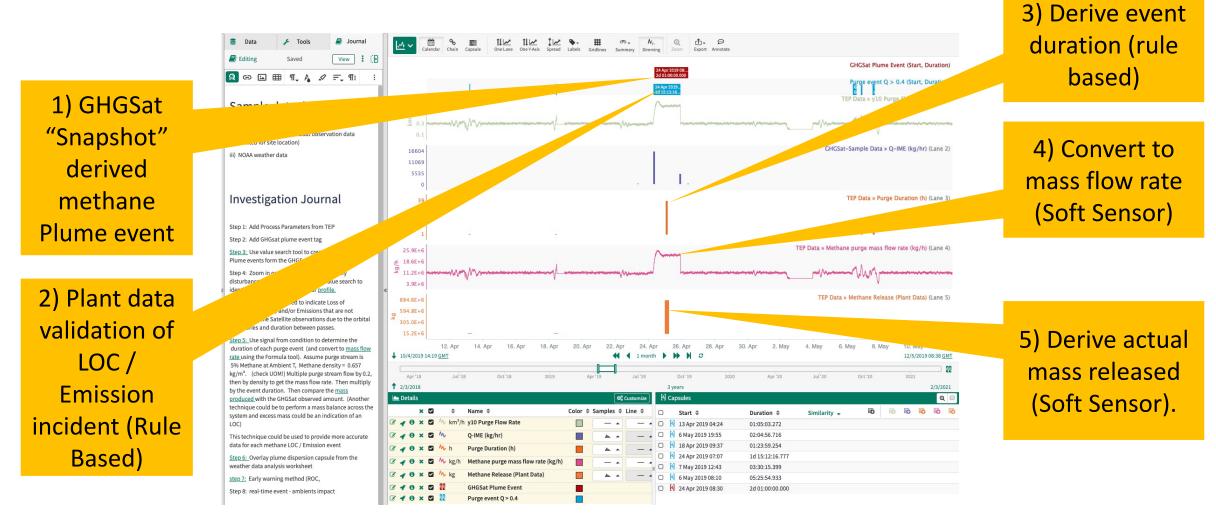
Estimated Methane release rate at observation timestamp (and error)



Validating Methane Plume Observations with Plant Data

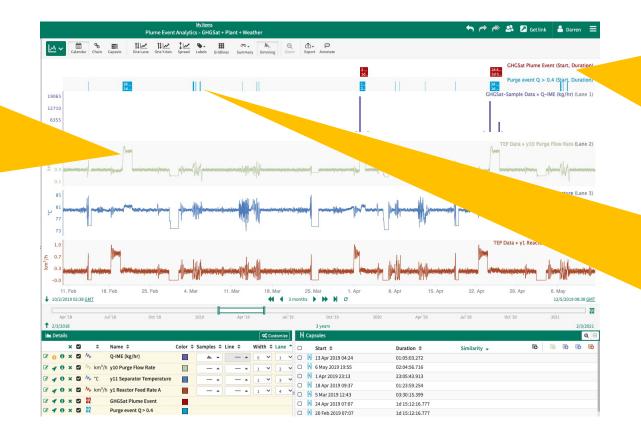
1) GHGSat "Snapshot" derived Methane even capsule. Observation can be prone to error.

2) Cross reference Plant data with observation, Step Change noted in purge stream.


3) Plant data derived Methane event capsule.

4 Plant disturbance prior to methane plume event capsule.

Creating Soft Sensors for Methane Emissions



Pattern based identification of potential methane releases

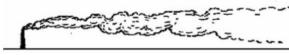
 The plant step change event is used to identify similar events in the plant history (and current real-time data).

Not detected from space!

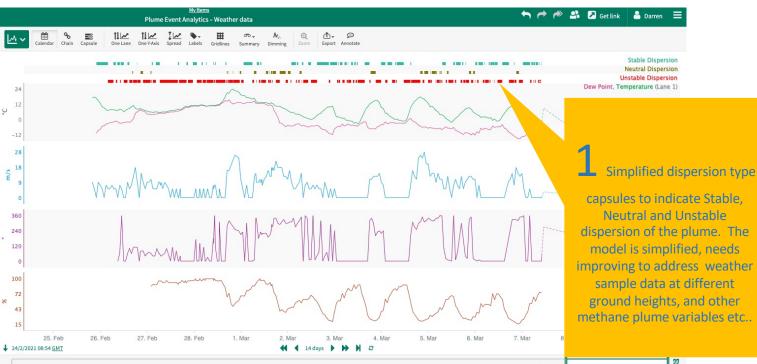
Hazards31

 Needs to be validated using real world plant data where several methane emissions have been observed. ...

 3) This method could also potentially identify transient methane
emissions that cannot be detected by satellite
observations due to
frequency of
observations

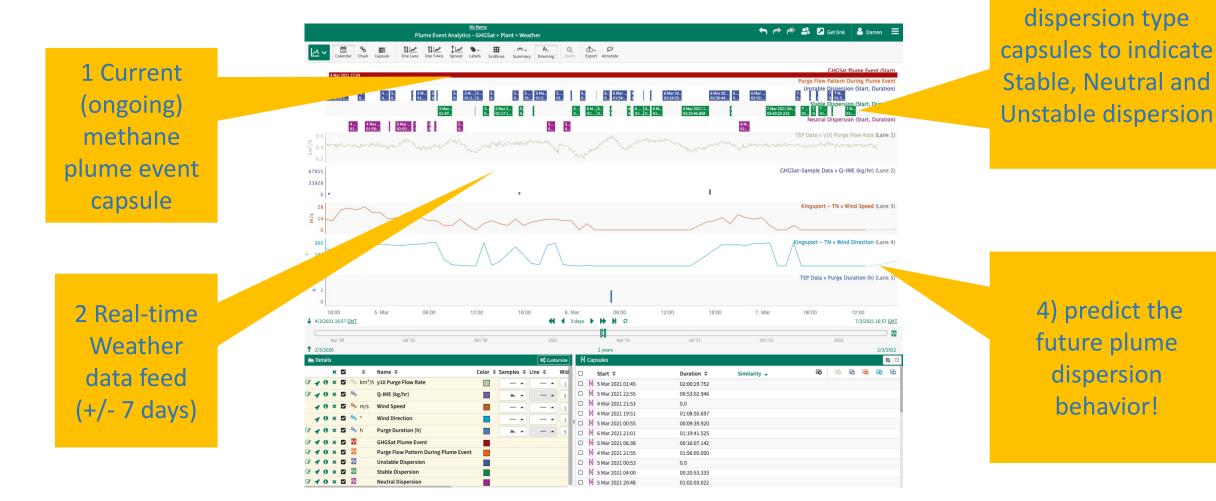


Plume Dispersion types derived from integrating NOAA Weather Data


Unstable

Neutral (Coning)

Stable (Fanning)



,	L3. Dec		20. Dec	27. Dec	3. Jan	10.	Jan		17. Jar	1	24.	Jan		31. Jar		7. Fel	>	14. Feb	21. Fel	Ē	28. Feb		7. Mar		22
† 9/12/202	20										3 m	onth	s											10/3/3	2021
📥 Details																		Customize	⊠c	apsules				(@ ⊟
	×	\$	Name ≑		Color 💠 :	Samples 🕯	Line 🕯	۰ ۱	Width	Lane	Axis	s \$	Align	\$ Show	Auto	Axis Min	Axis Max	÷ B	0	Start	\$	1	1	0	8
4 0	× 🛛	∿ °C	Dew Point] [-	[1	1	• с	~	L			-11.7	23.9		0	25 Fe	b 2021 21:55				
4 0	×	∿ °C	Temperature				1 -	- • [1	•	v c	~	L •			-11.7	23.9			26 Fe	b 2021 06:40				
4 0	× 🖾	₩ m/s	Wind Speed				1 -		1 ,	• 3	₩ в	~	L			0	27.72				b 2021 08:37				
4 0	× 🛛	M. °	Wind Direction				1 -		1	• 4	✓ A	~	L .			0	360				b 2021 10:24				
40	×	₩ %	Relative Humid	ity			1 -		1 ,	- 5	✓ E	~	L			15.018137	100				b 2021 13:51 b 2021 18:48				
2 4 0	× 🗹	22	Stable Dispersio	on																	b 2021 02:21				
2 4 0	×	22	Neutral Dispers	ion															0	27 Fe	b 2021 04:23				
3 4 0	x 🖸	22	Unstable Disper	sion																27 Fe	b 2021 15:41				

Methane Plume Event with Predicted Dispersion Model

Hazards31

3 Simplified

Summary

- More action on Methane is needed
- Space Data provides a viable method for detection of methane leaks.
- More satellites are needed with appropriate resolutions and higher frequency of observations
- Emergency response to methane leaks requires near real-time detection if early warning methods are not available
- Opportunity to apply analytics on integrated data sets to mitigate future leaks, but needs further research with "real-world" data to prove and validate the approach described herein.

Contact Information

Darren Steele Data Analytics Consultant dsteele@stiperstone.com +44 (0) 7858 205 725 Ian Spence Director Data & Platforms ispence@ghgsat.com

