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The IChemE Energy Centre 

Systems thinking solutions for the global energy economy 

 

 launched in March 2015 

 the Centre provides an evidence-based chemical 

engineering perspective on global energy challenges 

 

To find out more visit www.icheme.org/energycentre, email 

energycentre@icheme.org or tweet @EnergyIChemE 
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What next after Paris? 
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This is a Summit not a Lecture 

A Summit is a meeting 

between people who 

are interested in the 

same subject 

 



Dr David Clarke 

Chief Executive Officer 

Energy Technologies Institute 
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The ‘logical’ economic route forward for the UK is clear 
But implementation is not just about logic and risk – it’s political and societal 

• In a world where we …… 

– Require energy security 

– Need to deliver affordability  

– Aspire to meet climate change targets including nett zero emissions 

• The logical economic route forward is clear ….. 

– Decarbonise electricity by 2030 – gas, CCS, nuclear, renewables (wind), bioenergy 

– Then accelerate decarbonisation of heat (electricity, non-fossil gases, CHP, efficiency) 

and transport (efficiency, biofuels, electricity, hydrogen) 

– Retain centralised grids but ‘smarter’ 

• BUT ….. 

– All groups considering UK energy strategy, policy and economics are essentially 

working from the same assumptions and the same key data – challenge is needed 

– Failure to deliver a secure energy system is ‘not an option’ 

– Uncertainties are increasing 

– Consumer led solutions are on the increase but integration is haphazard 

– Political will is needed to deliver any direction of change at scale and at speed …… 
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An emissions reduction plan  
Power now, heat next, transport gradual – cost optimal 
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There are major options and drivers in how we develop 

the UK energy system ….. 
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The UK can achieve an affordable transition (1-2% of GDP) 

but system optimisation is key 
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The Value of CCS is in its many roles 

ETI energy system modelling points to ‘energy system-wide’ value of 

CCS extending beyond low carbon electricity generation 

‘Negative 

emissions’  

Enables continued use of fossil fuels 

where very expensive to replace  

Low carbon 

electricity from 

fossil fuels 

CCS with 

biomass  

Gasification 

applications  

Flexible low carbon fuels 

(hydrogen, syngas)  

Low carbon energy diversity, portfolio of flexible low carbon energy vectors, 

option value & robustness in meeting carbon targets  

CCS on 

industrial 

emissions  



©2016 Energy Technologies Institute LLP - Subject to notes on page 1 

CCS cost reduction potential  
primarily driven by increasing scale and sharing infrastructure 

Levelised costs are in UK£ 2013, capital costs are +/- 40%( EPC *1.4), discount rates are adjusted 

for risk (range 9-16%). Gas £24/ MWht  and CO2 emission £31/te.  All plants other than first 

demonstration plant are 860MW net output. 
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Storage 
it’s not going to be simple if we want it to make a big difference  

What do we use energy for …. 

DUKES (2014 data) 

Effective large scale energy storage needs 

to support multiple integrated demands – 

across the system ….. 

….. and the system may need considerable 

adaptation to incorporate it ….. 

What do we want storage for ? 

 Mobility (road vehicles) 

 Responsiveness / flexibility 

 Reserve / back-up 

 Load levelling 

All different, all changing markets …. 

Gas is an easy example ….. 
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Reset :  

could we meet 2030 emissions reduction targets on solar ? 

• Land required equivalent to 4 national parks 

in south of England 

 

 

 

 

 

 

 

• Winter demand met by gas – annual CO2 

intensity >100g/kWh 

• To remove gas use requires further 80GW of 

solar and 60TWhs of storage (equating to a 

40ft shipping container battery pack for 

every person in the UK) 

• Not a basis for the electrification of cars 

and home heating which will increase 

winter demand and overall system 

flexibility required 

 

 

• 188GW of solar PV delivering just over half of 

current total annual demand (~163KWh) 

• Less than half (47%) could be used at the time of 

production 

• 20-50GW of storage needed to shift supply to meet 

evening demand 

• Current outlook suggests by 2030 there could be no CCS, very limited bio, up to 10GW additional 

offshore wind, maybe no new nuclear 

• How far can solar PV, storage and gas take us? 
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ETI scenarios – Clockwork, Patchwork  
central control vs locally based decisions 

Liquid fuels 

Gas 

B 

I 

T 

2050 

Nuclear 
Elec Elec 

B 

I 

T 

2050 

Gas 

Nuc 

Wind 

Patchwork 
Regional and community decisions 

Larger number of (generally) smaller capital 

projects 

Clockwork 
Well coordinated, long-term investments 

National planning 

25% increase in abatement cost to 

2030 (+£33bn) 

100% increase in system capex 

cost to 2030 (+£450bn) 

Liquid fuels 
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Less coordination increases costs  
– but may be faster in today’s UK ? 

Power 

Heat 

Transp 

Infrast 

Power 

Heat 

Transp 

Infrast 

~£100 bn 

~£500 bn 

~£200 bn 

~£900 bn 

Clockwork – steady progress 

lowest cost 

greatest economic benefits … 
 

Patchwork – fast decisions at regional 

level, diverse solutions 

Adaptability for shocks and diversions? 

Reality - somewhere in the middle? 

£150bn capex to 2030 

+£2-3bn p.a.vs ‘do nothing’ on carbon 

reduction 

Capex Capex 
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Way forward is clear - 

implement ‘no regrets’ solutions, test new options 
Seek to understand scale of uncertainties and evaluate potential impacts 

• The logical, economic, route forward is clear ….. 

– Decarbonise electricity by 2030 – gas, CCS, nuclear, renewables (wind), bioenergy 

– Then accelerate decarbonisation of heat (electricity, non-fossil gases, CHP, 

efficiency) and transport (efficiency, biofuels, electricity, hydrogen) 

– Retain centralised grids but ‘smarter’ 

• The details of all these need to be tested ….. 

– Drive forward new capacity in the main low carbon electricity generating technologies 

— nuclear, carbon capture and storage (CCS, on gas powerplants) and offshore wind 

– Press ahead with local and regional whole-system, large-scale pilot projects to 

establish real-world examples of how the future system will work 

– Move beyond current ‘single technology’ demonstrations and incorporate all aspects 

of the energy system along with consumer behaviour and financial mechanisms 

– Develop policies to accelerate demand reduction, especially in the domestic heat 

sector, and the introduction of ‘smarter’ demand management. 

– Clarify and stabilise market mechanisms and incentives in order to give industry the 

confidence to invest. 
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‘A critical time for UK energy policy’ 

some concluding sound bites 

“ in developing energy policy, the whole system 

must always be considered ” 

“ what is required now is a combination of known 

technologies, scaled-up to unprecedented levels, 

integrated in smarter ways ” 

“ failure to work together by all stakeholders may be 

the single biggest risk for delivery of the future 

energy system ” 

“The future is closer than it might seem ……” 

Dr David Clarke FREng 

Prof Nigel Gilbert FREng 

Dr Martin Grant FREng 

Dr Keith MacLean 

Richard Taylor FREng 

Dr Alan Walker 

Dr Nick Hughes 



Dr David Clarke 

Chief Executive Officer 

Energy Technologies Institute 



Jonathan Graham 

Head of Policy 

The Association for Decentralised 

Energy  



Jonathan Graham 

A district heating network, covering 250,000 

houses, saves 0.25-1.25 MtCO2 



The carbon benefits of heat 

networks and combined heat 

and power (CHP) 
9 September 2016 

 

Jonathan Graham 

Head of Policy 
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About the ADE 

The voice for a cost effective efficient, low 
carbon, user-led energy system; a market in 

which decentralised energy can flourish 

• Areas of focus 

– Combined heat and power 

– District heating and cooling 

– Demand side energy services, 

   including DSR and storage 
Demand side 

services 

CHP 
District 

Heat 
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Two key problems with energy 
policy for efficiency 
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Where are we aiming energy policy? 
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CHP and carbon emissions 
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CHP is best use of thermal fuel 
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CHP is backbone of modern UK economy 

 CHP meets 6% of UK electricity 

supply – 5.9 GWe 

 Delivers heat to key industrial 

sectors – chemicals, paper, 

refining, food and drink, steel 

 Growing role in public sector 

and commercial organisations 

as an efficiency tool 

 Potential economic CHP 

capacity is three times higher 
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Gas CHP savings today 

 The CO2 savings from all 5.9 GW of good quality 

CHP plants is 14.24 MtCO2 per year. 

 A MWe of good quality CHP capacity reduces 

carbon emissions by 2,419 tCO2 per year 

– Against the UK fossil fuel basket across all CHP fuel types 
and technologies. 

 The net cost of carbon abated by a CHP project 

varies depending on investability of project 

 An investible gas CHP project is -60 to -100 

£/tCO2 compared to separate generation 
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Gas CHP savings tomorrow 

 From the early 2030s, gas CHP is at risk of 

increasing carbon emissions. 

 The effect of the electricity grid decarbonisation 

on CHP carbon emission savings will result in 

diminishing savings.  

 However, how much it diminishes will depend on 

what happens within the rest of the electricity 

system.  

– E.g. CHP without on-site demand (i.e. on heat networks) 
could save CO2 into 2045 
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What does gas CHP displace? 
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Limited gains in energy productivity 
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The role of heat networks 
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Some heat network CO2 estimates 
 A district heating network covering 250,000 

houses could save between 0.25 and 1.25 Mt 

CO2 (depending on fuel source) a year 

compared to conventional heating systems 

 Element energy estimated that the total carbon 

abatement from district heating schemes is 5.6 

MtCO2 in 2030 and 15.1 MtCO2 in 2050. 

 Element energy estimated that the average 

carbon abatement cost from district heating is 

from 2025 onwards ranges between £65/tCO2 

and £140/tCO2 in its work for the CCC. 
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Networks vs. generation 

 What is the carbon content of this?  

 

 

 Or the carbon content of this?  
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Heat networks capture new heat sources 
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The size of the waste heat prize 
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District heating in the UK 
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Policy and regulatory evolution 
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Further questions? 

 

Thank you 

• Jonathan.graham@theade.co.uk 

• Twitter: @theade_UK, @enerjg 

mailto:Jonathan.graham@chpa.co.uk


Dr Chris Williams 

Manager Energy Optimisation 

Tata Steel 



Dr Chris Williams 

Waste heat recovery increased onsite 

generation by 12 MWe and saved over 50,000 

tonnes of CO2 emissions 



Industrial Waste Heat Recovery 

 

 
A Steelworks Case Study 

 

Dr Chris Williams, Manager Energy Research , Tata Steel Strip Products UK 
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Overview 

•

•

•

•

•

•
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Industrial Waste Heat Recovery 

http://opus.bath.ac.uk/43201/1/A10069.pdf
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The Case Study Steelworks 
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Coke 

Loses 

Coal 

Cooling Water 

Waste Gases 

Products { 

Typical Energy Flows 

Indigenous 

Gases 



Slide 54 Slide 54 

Steel and Slab Works Area 
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Electrical Demand / Generation 

& 

Reduce 
electrical 
Demand 

Recover waste 
heat to 

generate steam  

& 

Maximise 
generation 

from process 
gases  

Self Sufficiency 

Energy Strategy 
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Basic Oxygen Steelmaking 
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WHR Boiler 
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Steam Distribution Circuit 
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Old Steam Control 
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New Steam Strategy 
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Steam Distribution Circuit 
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High Grade WHR potential 
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Capital Investment 
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Summary of University Project 
1. Quantify Waste Heat 

 
 
 
 

2. Technology to Capture it 
 
 
 
 
 

3. Optimum ‘end use’ : The Centralised Heat Recovery Strategy 
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Flexible Energy Solutions for Wales 
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SMART STEELWORKS 
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Thank you 



Tea break 

10:30-11:00 



Tom Greatrex 

Chief Executive 

The Nuclear Industry Association 



Tom Greatrex 

Nuclear energy in the UK saved more 

than 49 million tonnes of CO2 



Professor Rob Holdway 

Co-founder and Director 

Giraffe Innovation  



Professor Rob Holdway 

By using CO2 as a catalyst in plastic and 

through recovery of precious metals we can 

save 3.8 million tonnes CO2 



What is the Circular Economy & 

Does it Matter? 

 Professor Rob Holdway FRSA - Director, Giraffe Innovation 

@giraffeinnov 
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 The UK government is committed to moving to a 

low carbon economy. 

 But how can industry decarbonise and increase 

energy efficiency whilst remaining competitive? 

 

 

Decarbonisation 
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‘A diffuse subject’ 
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“It isn’t pollution that’s 

harming the environment.  

It’s the impurities in our 

air and water that are 

doing it”. 
George W. Bush  

LEADERSHIP? 
Its snowing and freezing in 
New York – We need Global 
Warming” 
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Leadership 

 

Designed in Germany built in 

Poland  



Slide 80 Slide 80 

 

Pro-Environmental Behaviour 
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Pro-Environmental Behaviour 
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Tech Roadmap – Clothes Cleaning 
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Energy & Usability Evaluation 
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An economic model that aims to decouple economic growth from the 

consumption of finite resources. 

 Restorative by design 

 Aims to keep products, components and materials at their highest 

utility or value (‘zero waste’) 

 “We need a more circular economy.  This means re-using, repairing, 

refurbishing and recycling existing materials and products. What 

used to be regarded as ‘waste’ can be turned into a resource. The 

aim is to close the loop (…), all resources need to be managed more 

efficiently throughout their life cycle.” 

 

Circular Economy 
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Circular Economy 
Risks 
- Rising prices for materials and energy; 
- Supplies of precious materials running low; 
- Environmental damage from resource extraction, landfilling and waste disposal; 
- Improving efficiency offers only short term gains. 

 

Resources Mining Manufacture Use Dispose 
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Circular Economy 
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Case Example: Econic Technologies (Imperial) 

 

 

 

 Econic Technologies have developed catalysts to be used 

with captured CO2 for co-polymerisation; 

 The catalyst reduces the amount of activation energy 

needed in the creation of polymers such as polyurethanes 

and polycarbonates. 

 

 

Carbon Capture and Utilisation of Waste CO2  

http://www.econic-technologies.com/
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Polymers from CO2 

 Poly(cyclohexene carbonate) (PCHC) is produced from 

cyclohexene oxide (CHO) and CO2. PCHC contains 31% 

CO2; 

 Alternative to ‘traditional’ polycarbonate which uses 

phosgene and Bisphenol A in its production. 
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 LCA (with sensitivity analysis)  

 Carbon capture technologies; 

 Production of the catalyst; 

 Pilot plant production of the polycarbonate; 

 Estimated impacts of full scale plant; 

 Production of report on potential environmental 

impacts and benefits of PCHC compared to 

‘traditional’ polycarbonate.  

 

Life Cycle Analysis (LCA) - Giraffe 
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 PCHC - estimated saving of 4kg of CO2 per kg of product 

compared to traditional polycarbonate ~ 56% CO2e (tbc); 

 Global production 4.5 million tonnes of polycarbonate;  

 If 20% PC was manufactured using captured CO2 

technology this would save 3.6m tCO2. 

 Other applications – Polyurethanes (20Mt p.a./$50Bn) - 

hard and soft foams, elastic films, coatings, adhesives or 

transparent sheets. 

 

 

 

Results  
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WEEE Man 

55% recycled 

38% landfill 

7% reuse 

Hoarding 
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 The EF measures the land space that is 

needed to mine the materials contained in 

a product, and the energy required for 

manufacturing, using and disposing it.  

 

 We each have 1.8 - our ‘fair earth share’. 

[Already using 2.2 (+21%)] 

 

 How much land (fair earth share) your 

mobile phone and personal computer 

require to absorb all the environmental 

impacts in a given year.  

 

 566 phones and 24 PCs would each use up 

the available earth share for one ‘world 

average citizen’. 

 

Ecological Footprint 
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Britain - 5th in the world in terms of the quantity of e-

waste per head in 2014 (23.5kg).  
E-Waste Monitor 2014, UNU 

E-Waste 
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Traditional linear consumption patterns (‘take-make-dispose’) are 
coming up against constraints on the availability of resources.  
  

Bingham Canyon copper mine, largest man-made hole in the 
world.  
0.75 miles (1.2 km) deep, 2.5 miles (4 km) wide, and covering 
1,900 acres (7.7 km²) 
Copper makes up only 1% of everything taken from the mine 
down from 4% in the 1900s.  
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 100 million electronic units discarded annually in the UK 

alone (~1Mt); 

 One of the fastest growing waste streams worth an 

estimated £1bn. 

 ~ 85% of all PCB scrap board waste goes to landfill.  

 (70% of this being of non-metallic content with little 

opportunity for recycling); 

 Economic loss – export. 

Electronic Waste (WEEE) 
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Critical Raw Materials (CRMs) 
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 Criticality through: 

 Geopolitics 

 Recycling Rates 

 Sector Relevance 

Critical Raw Materials 
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Asset Recovery 
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 Medium and high value PCBs (WEEE) sampled 

and analysed to determine the presence and 

concentration of PMs and CRMs; 

 XRF Analyser used to detect the presence of 

CRMs, AAS testing and inductively coupled 

plasma optical emission spectrometry (ICP-OES) 

to quantify the concentration of CRMs. 

 

Giraffe Innovation Trial - CRMs 
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Locating PGMs and CRMs 
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XRF analysis example 

Green LED: Gold & Gallium 
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Plasma Arc Collector Metal 

 Copper rich sample, organic materials – (volatile gas)  
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Plasma Arc Collector Metal 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Only a third of e-waste in the EU makes its way into recycling schemes; 
 One tonne of gold, worth about £24 million, is sent to landfill in the UK annually; 
 10 million tonnes of e-waste is generated each year in the EU, containing over 100 tonnes of 

gold worth around $4bn every year; 
 Gold and silver value in discarded e-waste in EU probably more than $1.5bn every year. 

0 
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Energy Consumption in Precious Metals 

Production  

Production from Ore Recovery by Plasma 
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CRM/PGM Recovery from Electronics 

Percentage of total weight 

Medium grade boards
1000kg

Slag  15.1%g

Metal 38.3%

Off gas 33.7%

Baghouse dust 13.4%

Copper
25%

Tin
3.3%

Nickel
0.56%

Antimony
0.22%

Silver
0.07%

Tantalum
0.04% Gold

0.026%

Niobium
0.015%

Aluminium
0.02%

Molybdenum
0.012%

Aluminium
0.3%

Lead
0.2%

Copper
0.2%

Antimony
0.08%g

Molybdenum
0.01%

Tin
0.05%

Paladium
0.004%

Platinum
0.02%

Percentage of total weight 

Medium grade boards
$2,500

Slag  $19

Metal $5,400

Copper
$475

Tin
$220 Nickel

$26
Antimony

$7

Silver
$144

Tantalum
$34

Gold
$4,000

Niobium
$3

Aluminium
$15

Molybdenum
$1.2

Aluminium
$2.6

Lead
$2.2

Copper
$6

Antimony
$4.5

Molybdenum
$1.1

Tin
$6

Palladium
$285

Platinum
$360 Silver

$28

Baghouse dust $419

© Copyright Giraffe Innovation Limited. Not to be reproduced 
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 Over 90% recovery of gold, platinum, silver and over 85% 

recovery of most CRMs; 

 Carbon footprint of gold (Embodied) 17.2tCO2e per kg; 

 75% of gold is lost in traditional WEEE recycling methods* 

 ~500kg** of gold is ‘lost’ per annum by WEEE processors 

(8,600tCO2e); 

 One tonne p.a. lost direct to landfill ~17,200tCO2e. 

 
*www.wrap.org.uk/sites/files/wrap/2012%2005%2024%20Sustainability%20Live%20WRAP%20WEEE%20FINAL.pdf 

**http://www.wrap.org.uk/content/wraps-resources-limited-conference 

 

  

Results  
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Automotive 

  1988 Range Rover Seat 2010 Range Rover Seat 
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REALCAR 
RECYCLED ALUMINIUM CAR 

6-10tCO2 over life 
Saving 20-30% material costs 
£5.8m investment 
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REALCAR 
LIGHT WEIGHT VEHICLE 

STRATEGY Achieved weight saving of 420kg – 
equivalent to the weight of six adults 
 
Every 100kg saved in the vehicle 
mass saves around 2% in fuel 
consumption 
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SUSTAINABILITY CHALLENGE 
CO2 EMISSIONS BY VEHICLE 

WEIGHT 

Kerb weight (kg) 

C
O

2
 g

/ 
k
m

  

Petrol 

Diesel 

Hybrid 

50 

100 

150 

200 

250 

300 

500 1000 1500 2000 

Reduction in Kerb Weight can be Equivalent to Improving Drivetrain Technology 

LWV Vehicle weight saves 
combined with PT & Parasitic 
loss reduction CAN get us to 

CO2 targets 
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Performance Economy (Stahel) 
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GE – Industrial Internet Vision 
“I always think about what’s next. 
The ability in our world to go man-
to-machine, to marry real-time 
customer data with real-time 
performance data of our products… 
that is the holy grail.” 
- Jeffrey Immelt, GE CEO 
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 Maintenance costs on monitored assets are 10-30% lower 
than un-monitored assets 

 

 GE is spending $1B / year on the Industrial Internet Real 
time monitoring & analytics (1000 staff Silicon Valley) 

 

GE Aviation myEngines 

 Tracks engine parts and communicates real-time to GE 
and airlines to manage engine fleets and improve 
productivity. 

 

Product Design Reviews 
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 Using data to impact reliability & performance 

GE – Wind’s Fleet Monitoring & 

Diagnostic Services 

$30 Million 
Saved in avoided repairs, lost power 

production, and maintenance costs 

 

25% increased output 
Model based control algorithms 

enabled fleet of 1.2MW turbines to 

deliver 1.5 MW with no mechanical  

change 
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 Manufacturer of energy 

storage systems sold  

performance guarantees 

but had no long term performance 

data of battery cells in this application 

 

 Able to monitor discharge/ 

charge capacity of each cell over time, reducing 

risk 

 

GE – Energy Storage Systems 
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IoT 

‘Network-enabled’ smart devices 500 billion by 2050 (International Energy Agency ) 

By 2030 $236 Bn in services spending will be supported by IOT (Gartner) 

Data Security an issue – Hoarding of devices. 
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Smart Cities 

© Ellen MacArthur Foundation 



Slide 119 Slide 119 

IoT 
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Highest GHG  Impact products 

 Collectively  these 

products are >40% of 

the total embodied 

GHG impacts of the 

UK market of EEE 
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 Fridges/Freezers 

 Vacuum Cleaners (ODM/retailer) 

 Washing Machines/Washer Dryer 

 Tumble Dryers 

 Laptop Computers/Tablets 

 Small Household Products 

 

Product Design Reviews 
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 Initial Response: What can you tell us that we don’t 

already know? 

Answer: 

 Washing Machine: £560,000 (per 100,000 units), 740 

tCO2e and 470t; 

 TV: £180,000 and 600tCO2e; 

 Vending machines: £140,000 and 600tCO2e; 

 Microwave: £320,000 and 300tCO2e; 

 Vacuum Cleaner £111,740 per annum, 3,994tCO2e,1,126 

tonnes material. 

 

Product design reviews 
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Eco-Design - Manufacture 
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Eco design -  Manufacture  

 Plasterboard manufacture 

12,500tCO2e  

 Concrete beam manufacturer 

1,000tCO2e 

 Brick manufacturer  

5,600tCO2e 

 Sanitary ware 4,300tCO2e 

 Vinyl flooring 1,200tCO2e 

 

 ~ Savings of over  £3.1 million 
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Technology  

 Exhaust heat kilns could be used to pre-dry or 

pre-warm the products prior to kiln; 

 Installing regenerative Burner (Twin Bed Burners) 

to recover waste heat from furnace exhaust 

gases to preheat combustion air; 

 Installing oxygen control loop to improve ovens 

and kiln efficiency; 

 Replace/add insulation to ovens and kilns to 

reduce heat loss. 
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Slide 129 Slide 129 

Thank you 

r.holdway@giraffeinnovation.com 

+44(0)7788423399 

 

@giraffeinnov 
 



Panel discussion – Energy and 

the circular economy 
Professor Richard Darton 

University of Oxford 



Energy and the Circular Economy 

Panel discussion 
Chair: Prof Richard Darton 
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Industrial ecology 1 

Resources 

Wealth Waste 

Resources 

Renewable 

energy 

Waste 

heat 

Wealth Waste 

Resources 

Renewable 

energy 

Waste 

heat 

Wealth Waste 
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Industrial ecology 2 

See 



Panel discussion – Energy and 

the circular economy 



Lunch 

13:00-14:00 



Professor Patricia Thornley 

Director 

SUPERGEN Bioenergy Hub, 

University of Manchester 



Professor Patricia Thornley 

Bioenergy can give carbon reductions 

of 80-90% 



Professor Patricia Thornley 

Director 

SUPERGEN Bioenergy Hub, 

University of Manchester 
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Feedstocks 
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Supply chains 
 

First generation

Second generation

Land area Biomass Convertible 

portion of 

biomass

Conversion 

product

Final fuel 

product
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Pathways and products 
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Can supply 44% UK energy demand 



Slide 143 Slide 143 

UK systems for life cycle evaluation 
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Methods 
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1. GHG emissions from the bioenergy system per 

unit of product 

2. Absolute GHG savings from the bioenergy 

system per unit of product 

3. GHG reductions (relative percentage) per unit of 

product 

4. GHG reductions per unit of biomass utilised 

5. GHG reductions per unit of land occupied 

6. Cost per unit of GHG reduction  

 

Indicators 
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Relative GHG reductions  

 District heating chip 

boiler gives largest 

reductions – making 

use of heat & 

electricity 

 Electricity systems 

(large pellet and small 

chip) are next best –

carbon intensity of 

counterfactual 
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Absolute GHG reductions 

 Electricity systems 

best – displacement of 

high C electricity 

 Pellet boiler worst – 

relatively low C 

intensity natural gas 

counterfactual 
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• Wood chip boiler for district heating delivers the greatest GHG reduction 
impact per unit of biomass; followed by the ammonia and large electricity 
systems 

GHG reductions per unit of biomass 
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GHG reductions per unit of land 

 Biochar maximizes 

reductions because of 

process efficiency and 

carbon intensity of 

displaced product 
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Cost per unit of GHG saved (£/kg CO2 

 

0.0 

336.3 

32.9 

0.1 0.0 0.2 
0 

50 

100 

150 

200 

250 

300 

350 

400 

Ammonia Pellet boiler (domestic 
heat) 

Chip boiler (district 
heat) 

Small electricity Large electricity Biochar 
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Variability due to supply chain losses 

 e.g. Short rotation coppice 

storage in wood chip 

heaps loses ~20% dry 

matter in 3-6 months 

 When displacing natural 

gas for heating this 

increases GHG emissiosn 

and land area required by 

26% 
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Variability due to process variations 
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Variability from site to site (methane) 
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Variability due to difficulties in 

measurement:N2O, fugitive emissions 
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Variability due to assumptions 
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Variability due to counterfactuals 
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Biomass can make very substantial 

cost effective GHG savings but care 

is needed in system analysis! 

 
Dr Mirjam Roeder, University of Manchester 

Dr Paul Adams, University of Bath 

Dr Carly Whittaker, Rothamsted Research Insitute 

 

www.supergen-bioenergy.net 
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Relative GHG reductions  

 District heating chip 

boiler gives largest 

reductions – making 

use of heat & 

electricity 

 Electricity systems 

(large pellet and small 

chip) are next best –

carbon intensity of 

counterfactual 



Slide 159 Slide 159 

Absolute GHG reductions 

 Electricity systems 

best – displacement of 

high C electricity 

 Pellet boiler worst – 

relatively low C 

intensity natural gas 

counterfactual 
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GHG reductions per unit of biomass 

 Wood chip boiler for 

DH best use of 

biomass, followed by 

ammonia and large 

electricity 
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GHG reductions per unit of land 

 Biochar maximizes 

reductions because of 

process efficiency and 

carbon intensity of 

displaced product 
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Cost per unit of GHG saved (£/kg CO2 

 

0.0 

336.3 

32.9 

0.1 0.0 0.2 
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Ammonia Pellet boiler (domestic 
heat) 

Chip boiler (district 
heat) 

Small electricity Large electricity Biochar 
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Variability due to supply chain losses 

 e.g. Short rotation coppice 

storage in wood chip 

heaps loses ~20% dry 

matter in 3-6 months 

 When displacing natural 

gas for heating this 

increases GHG emissiosn 

and land area required by 

26% 
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Variability due to process variations 
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Variability from site to site (methane) 
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Variability due to difficulties in 

measurement:N2O, fugitive emissions 
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Variability due to assumptions 
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Variability due to counterfactuals 

Welfle A., Gilbert P., Thornley P., The potential for generating low carbon heat from biomass resources: life cycle 

assessment of bioenergy and counterfactual scenarios, forthcoming 
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Biomass can make very substantial 

cost effective GHG savings but care 

is needed in system analysis! 

 
Dr Mirjam Roeder, University of Manchester 

Dr Paul Adams, University of Bath 

Dr Carly Whittaker, Rothamsted Research Insitute 

 

www.supergen-bioenergy.net 



Dan Sadler 

Head of Energy Futures 

Northern Gas Networks 



Dan Sadler 

Switching to hydrogen could reduce carbon 

levels by 73% 



http://www.northerngasnetworks.

co.uk/2016/07/watch-our-h21-

leeds-city-gate-film/ 

http://www.northerngasnetworks.co.uk/2016/07/watch-our-h21-leeds-city-gate-film/
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Tea break 

15:15-15:35 



Mark Lewis 

Low Carbon Consultant 

Tees Valley Combined Authority 



Mark Lewis 

Tessside aims to save over 2m tpa 

CO2 from members of the collective  



CCS - Making it happen in the 

Tees Valley 
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Why ICCS/U and 

Why Teesside? 
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Why Clusters? 

East Coast Process Industry Clusters 
 

• Concentration of Emitters on coast – lower cost network 

 

• Significant direct & indirect  employment impact 

 

• High GVA per employee 
• Average in chemical sector in e.g.Teesside is £104,000 pa 

 

• High wages 
• Average chemical wage in e.g. Teesside is £35,600 

 

• Consistent trade surplus 

 

• Early mover advantage & investment attraction 
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Teesside 

Collective 

Multinational companies based in Teesside aiming to create Europe’s 

first CCS equipped industrial zone 

 

 

BOC    Largest steam methane reformer in UK 

Growhow   Largest UK ammonia fertiliser producer 

Lotte Chemicals  Produces PET for 15bn drinks bottles per year 

Sembcorp  Global Power and Industrial Park operator 

SABIC   Global Petrochemical Company 

Tees Valley Unlimited Arm of Tees valley Combined Authority 

NEPIC   Industry Cluster Body 
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The Teesside 

Collective Vision 

https://youtu.be/UwOJqKhKuZg 

 

https://youtu.be/UwOJqKhKuZg
https://youtu.be/UwOJqKhKuZg
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Teesside 

Collective now 

– Continued Industrial Support 

• Additional industrial  partners 

• Working with other clusters & projects 

 

– Delivering a low carbon action plan 

• Identifying CO2 conversion & utilisation options ( with Sheffield 

University) 

– Mineralisation, chemicals   

– Existing infrastructure  and production  allows demonstrate at scale 

• Developing the circular economy with CCS/U  

– New integration options (Cluster Study) 

– Industrial and renewable heat use (HNDU Study) 

– Energy Storage 

– Biofuels and Biorefining  
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Teesside 

Collective future 

– Demonstrate practical applications 

• Capture & Utilisation from Industrial Emitter 

• Demonstration Facility 

 

– Policy and project developments 

• Financing Options 

• Shipping Options  

 

– Decarbonising Heat 

• The H21 project 
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From CCS  
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To a Low Carbon Economy 



Pawel Kisielewski and Peter 

Hammond 
CEO and CTO 

CCm Research 



Pawel Kisielewski and Peter 

Hammond 
New methods of producing fertiliser offer a 

carbon reduction of 92% 



The Role of Waste Feedstocks, including 

CO2, in the Creation of Value and the 

Reduction of Carbon 



https://youtu.be/vmf1s9aliSA 

https://youtu.be/vmf1s9aliSA
https://youtu.be/vmf1s9aliSA
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Objectives 

• An explicit description of the anticipated carbon 

reduction 

• An indication of the cost per tonne of carbon 

abated 

• When will the technology will be ready for market? 

• What is CCm’s carbon reduction figure? 
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Objectives 

• Total CO2 emissions from the manufacture of 

fertiliser 

• An indication of the cost per tonne of carbon 

abated 

• When will the technology will be ready for market? 

• What is CCm’s carbon reduction figure? 
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 CCm’s basic process 

 

0.44 Tonnes of CO2 

 

for every tonne of 

fertiliser produced 

Source: CCaLC 

Total CO2 emissions during  

fertiliser manufacture 
 

 Conventional methods 

 

6.98 tonnes of CO2 

 

for every tonne of 

fertiliser produced 

Source: NNFCC 
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92% less 

 



Slide 193 Slide 193 

Objectives 

• Total CO2 emissions from the manufacture of 

fertiliser 

• CCm’s process generates income (not cost) of 

approx £9.69 per tonne at the basic formulation  

• Project IRRs forecast in excess of 15% Source: Mott 

MacDonald) 

• When will the technology will be ready for market? 

• What is CCm’s carbon reduction figure? 
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Objectives 

 

• Total CO2 emissions from the manufacture of 

fertiliser 

• Project IRRs on base level process are in excess 

of 15% (Source: Mott MacDonald) 

• The technology is TRL 7/8 and will be ready for 

market in Q2 2017 

• What is CCm’s carbon reduction figure? 
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Objectives 

• Total CO2 emissions from the manufacture of 

fertiliser 

• Project IRRs on base level process are in excess 

of 15% (Source: Mott MacDonald) 

• The technology is TRL 7/8 and will be ready for 

market in Q2 2017 

• A CCm plant  producing 10,000 tonnes of fertiliser 

pa. would abate approx. 65,000 tonnes of CO2 

carbon 
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Panel discussion – Open innovation 

and new energy solutions 
Dr Richard Bonser 

Brunel University London  



Open innovation and new energy 

solutions 

Richard Bonser, Brunel University London 
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 How can industry engage with academia 

 Case studies 

 What to expect 

Introduction 
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 Government support schemes 

 KTNs 

 University outreach 

Engaging with the knowledge base 
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 R&D when you need it 

 Drive product innovation 

 

Why? 
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 Various levels 

 Student projects, interns 

 PhDs 

 Matched funding schemes 

 Consultancy 

 Contract research 

How? 
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 Brunel/ERDF funded 

 Help SMEs in Greater 

London to access 

knowledge base 

 Provides staff time 

and students to 

undertake research 

Helping SMEs to innovate 
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 Ray Wilkes 

 Aim to develop a photobioreactor incorporated 

into a building façade 

 Research into algal growth rates 

 Design of cultivation system 

 Each panel could power 10m2 floor space 

 Potential to sequester 156kg of CO2 per annum 

 www.astudio.co.uk 

A Studio algal facade 
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 Elise Hounslow 

 Aesthetically pleasing alternative to wind turbines 

and pv 

 Looked at alternative pv technologies 

 Manufactured and tested leaf-like arrays 

 Work continuing with further students 

 www.solarbotanic.com 

Solarbotanic e-leaf solar wind tree 
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 Different academic and industry cultures 

 With student projects, need to satisfy academic 

requirements as well as industry goals 

 Academics tend to look for novelty whereas 

industry often seeks relevance 

 Timely delivery 

 

Culture and expectations 
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 Many organisations can help 

 Can provide R&D capacity that small firms may 

lack 

 Examples of renewables applications from Brunel 

Design 

 Things to be mindful of! 

Innovating with academia 
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Thank you for listening 

Richard.Bonser@brunel.ac.uk 



Panel discussion – Open innovation 

and new energy solutions 



Closing remarks and drinks 

reception 
17:30-18:30 


