Cheme Research & Design Palm Oil Processing Special Interest Group

The Potentials of Co-pyrolysis of Empty Fruit Bunch (EFB) and Disposable Face Mask wastes.

Melvin Wee Xin Jie

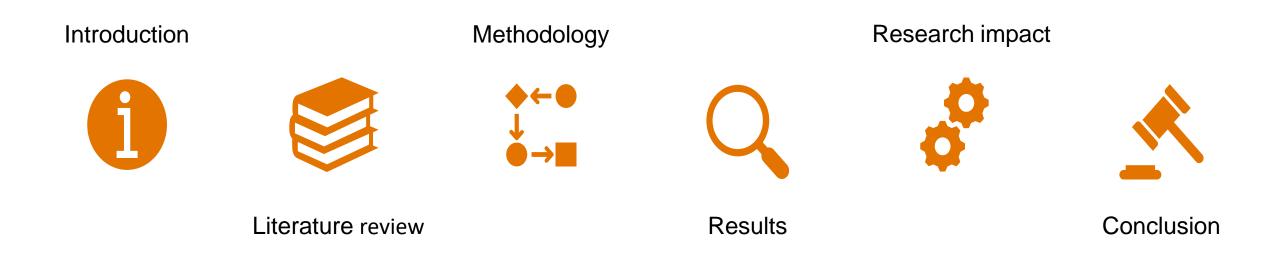
Faculty of Engineering and Science, Curtin University Malaysia

Associate Professor Dr. Bridgid Chin Lai Fui

Professor Agus Saptoro

Ir. Professor Jaka Sunarso

Ir. Dr. Chew Jiuan Jing

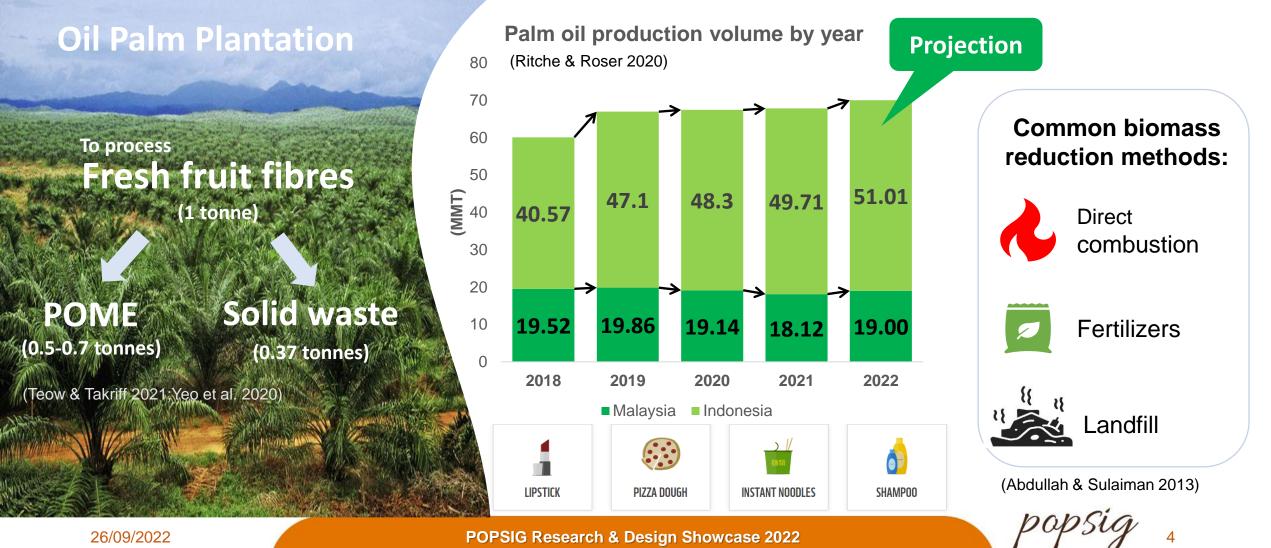

Ir. Professor Suzana Yusup

Presentation Outline

2

Introduction (1)

Keywords:


Oil Palm Biomass, COVID-19, Disposable Face Mask waste, Co-pyrolysis

Background

Background

years

'More masks than jellyfish': coronavirus waste ends up in ocean – the Guardian (Kassam 2020) **I**Chem**E**

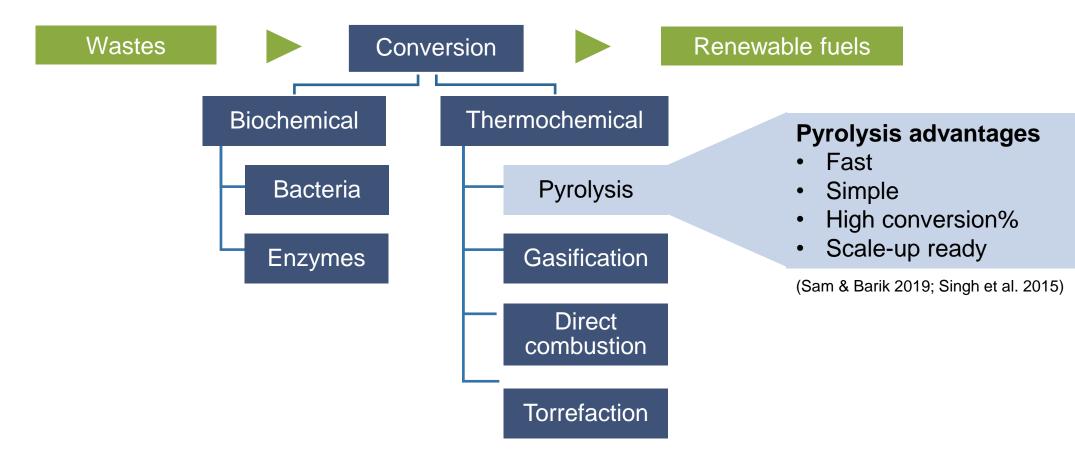
Palm Oil Processing Special Interest Group

Single-use plastic waste

73.33% Polypropylene (PP)

Disposable face mask (DFM) 13.77% Polyethylene (PE)

(Jung et al. 2021)


Consequences

- Microplastic pollution
- Landfill

(Li et al. 2022; Hui Li et al. 2022; Wang et al. 2022)

POPSIG Research & Design Showcase 2022

Background

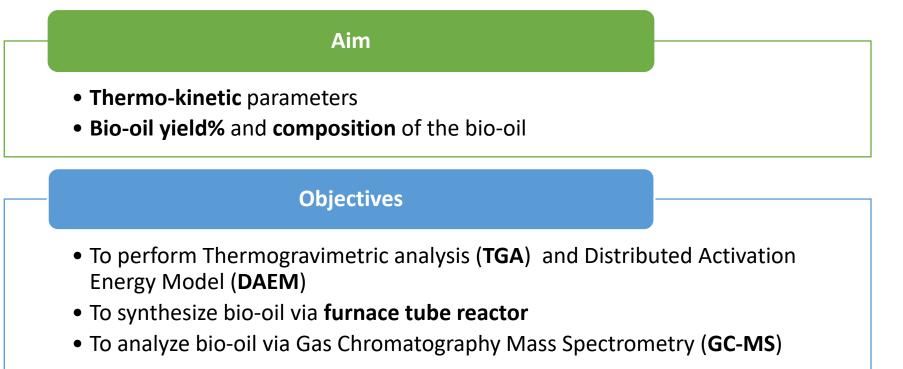
Biomass Strong selectivity of Plastic desired aromatics Simple configuration design Catalyst Reduce coke formation on catalyst **Renewable fuels** (Johansson et al. 2018; Xu et al. 2021)

Background

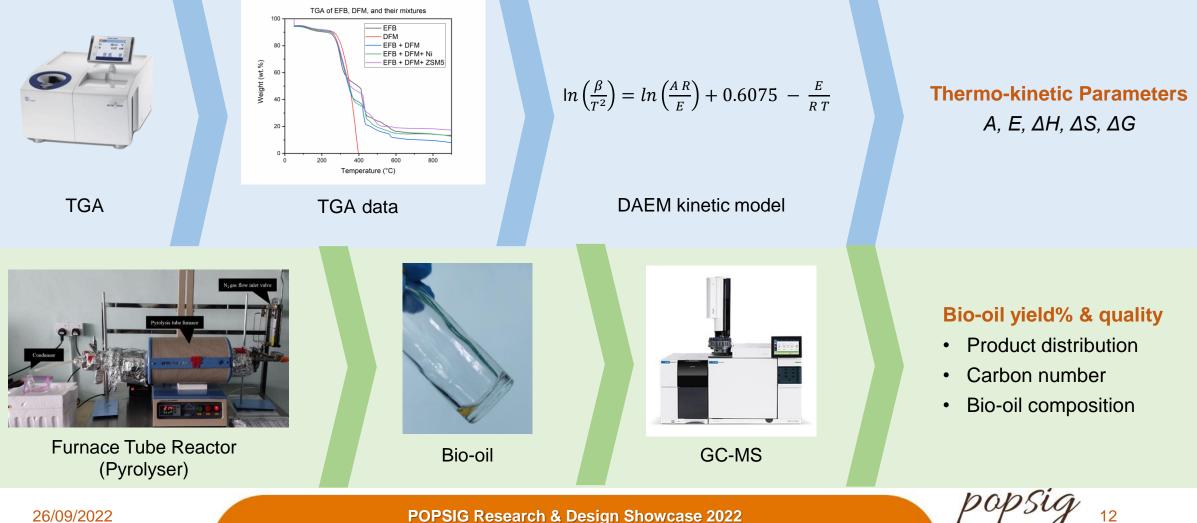
Problem Statement

Palm Oil Processing Special Interest Group

Can we reduce these wastes via co-pyrolysis?



Aims and Objectives


Methodology

Thermogravimetric analysis (TGA)

Gas Chromatography Mass Spectrometry (GCMS)

26/09/2022

Methodology

Results Q

Thermo-kinetic results

Product analysis

26/09/2022

Palm Oil Processing Special Interest Group

Single feedstock and binary mixture pyrolysis

Palm Oil Processing Special Interest Group

Effect of heating rate on the catalytic co-pyrolysis process

Palm Oil Processing Special Interest Group

Thermo-kinetic analysis results:

The content on this slide is not available to the POPSIG members and participants, until further notice, as it contains the author's unpublished data. The result will be presented during the seminar.

Palm Oil Processing Special Interest Group

Co-pyrolysis product yield distribution

Palm Oil Processing Special Interest Group

Co-pyrolysis product yield distribution

Results

Bio-oil composition distribution

Palm Oil Processing Special Interest Group

Research impacts

Contributions to the palm oil industry Compliance to SDGs

Research Impact

- Produce value-added products
- Bio-oil quality

- Cost effective alternative to pretreatment
- Circular economy
- Solving the abundance of palm oil waste

- Creating solutions to reduce ghg
- Reduce face mask waste going into the river/sea waters causing microplastic pollution

Future Study & Conclusion

What's next?

In a nutshell,...

Future Study

Palm Oil Processing Special Interest Group

Parametric study

- Temperature
- Feedstock ratio

Kinetic modelling

- Model fitting
- Comparing with other models

Technoeconomic analysis

- Simulation
- Feasibility study

Conclusion

TGA and DAEM

 To determine the thermo-kinetic parameters, A, E, ΔH, ΔS, ΔG

Findings

- ✓ The thermo-kinetic parameters of the co-pyrolysis
 of EFB and DFM were determined
- ✓ The effects of heating rate is significant, increasing heating rate, increases the degradation rate.
- ✓ The performance of Ni and ZSM-5 catalyst were evaluated, ZSM-5 > Ni in terms of E 54.22 vs 59.49
 kJ/mol

ChemF

Conclusion

Bio-oil synthesis & analysis

Aims & Objectives

• To determine the bio-oil yield & composition

Findings

- ✓ The product distribution of the co-pyrolysis of EFB and DFM were determined.
- ✓ The addition of Ni and ZSM-5 catalyst were evaluated, Ni catalyst increased the biogas yield, while ZSM-5 increased the bio-oil yield
- Co-pyrolysis enhances the formation of aromatic hydrocarbons, and reduces the C-number selectivity hence improved the quality of bio-oil as a bio-fuel.

ChemF

- Dr. Bridgid Chin Lai Fui, Associate Professor, Faculty of Engineering and Science, Curtin University Malaysia.
- **Dr. Agus Saptoro**, Professor, Faculty of Engineering and Science, Curtin University Malaysia
- Ir. Dr. Jaka Sunarso, Professor, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak
- Ir. Dr. Chew Jiuan Jing, Discipline Leader, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak
- Ir. Dr. Suzana Yusup, Principal Researcher and Head of Section, Fuel and Combustion, Generation unit, Department of Generation and Environment Tenaga Nasional Berhad Research.

Reference

- 1. Teow, Y.H. and M.S. Takriff, *Zero waste technologies for sustainable development in palm oil mills.* Journal of Oil Palm, Environment & Health, 2021. **12**: p. 55-68.
- 2. Abdullah, N. and F. Sulaiman, *The Oil Palm Wastes in Malaysia*. 2013. p. 75-93.
- 3. Ritche, H. and M. Roser. *Palm oil*. 2020 [cited 2020 10 December]; Available from: https://ourworldindata.org/palm-oil.
- 4. Yeo, J.Y., et al., *Synthesis of Sustainable Circular Economy in Palm Oil Industry Using Graph-Theoretic Method.* Sustainability, 2020. **12**(19).
- 5. Kassam, A. 'More masks than jellyfish': coronavirus waste ends up in ocean. 2020 [cited 2022 3 March]; Available from: <u>https://www.theguardian.com/environment/2020/jun/08/more-masks-than-jellyfish-coronavirus-</u> waste-ends-up-in-ocean.
- 6. Li, B., et al., *Environmental risks of disposable face masks during the pandemic of COVID-19: Challenges and management.* Science of The Total Environment, 2022. **825**: p. 153880.
- 7. Hui Li, A.S., et al., *Adverse environmental effects of disposable face masks due to the excess usage.* Environmental Pollution, 2022. **308**: p. 119674.

- 8. Wang, F., et al., *Microfiber releasing into urban rivers from face masks during COVID-19.* Journal of Environmental Management, 2022. **319**: p. 115741.
- 9. Jung, S., et al., *Valorization of disposable COVID-19 mask through the thermo-chemical process.* Chemical Engineering Journal, 2021. **405**: p. 126658.
- 10. Sam, A. and D. Barik, *Chapter 2 Toxic Waste From Municipality*, in *Energy from Toxic Organic Waste for Heat and Power Generation*, D. Barik, Editor. 2019, Woodhead Publishing. p. 7-16.
- 11. Singh, R., et al., *Chapter 10 Hydrothermal Liquefaction of Biomass*, in *Recent Advances in Thermo-Chemical Conversion of Biomass*, A. Pandey, et al., Editors. 2015, Elsevier: Boston. p. 269-291.
- 12. Johansson, A.-C., et al., *Co-pyrolysis of woody biomass and plastic waste in both analytical and pilot scale.* Journal of Analytical and Applied Pyrolysis, 2018. **134**: p. 102-113.
- Xu, D., et al., Simultaneous production of aromatics-rich bio-oil and carbon nanomaterials from catalytic copyrolysis of biomass/plastic wastes and in-line catalytic upgrading of pyrolysis gas. Waste Management, 2021.
 121: p. 95-104.
- Suriapparao, D.V., et al., Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation. Bioresource Technology, 2020. 302: p. 122775.

THANK YOU

Our appreciation for your support

Palm Oil Processing Special Interest Group

Malaysian Oleochemical Manufacturers Group

