

Lessons Learned Database

Individual Incident Summary Report

Incident Title Steam Explosion During Valve Maintenance			
Incident Type		Explosion	
Date		19 th November 2013	
Country		Belgium	
Location		Antwerp, VAN	
Fatalities		Injuries	Cost
2	•	0	Unknown
Incident Description	Two technicians were re-injecting sealant into a leak-sealing clamp around		
	the 400 DN (16" NS) 900# bonnet-to-body flange of a motorised valve in th circulating water circuit of the CCR Platformer steam generation system. Th		
	valve was in the open position with boiler water at 70 barg (1015 psig) an		
	290 °C (554 °F) flowing through it. The bonnet-to-body flange was a ring type		
	joint (RTJ) and the clamp surrounding the joint was originally fitted in 2011.		
The second	, , , , ,,,		
	Soon after the technicians started re-injecting sealant, all 20 of the $1\frac{1}{2}$ "		
Credit: TEAM [®] Industrial Services	chrome/moly steel (ASTM A193 Gr. B7) stud bolts securing the bonnet failed		
	catastrophically causing the bonnet-motor assembly to separate from the		
	body with great force. The sudden release of boiler water resulted in a boiling		
	liquid expanding vapour explosion (BLEVE). The two technicians were killed.		
Incident Analysis	Basic cause was stud bolt failure due to caustic stress corrosion cracking		
	(SCC) and tensile overload (14 bolts severely degraded by caustic SCC).		
	Critical factors included: 1) Poor boiler water quality control since 2009 had		
	caused several leaks in the steam generation system requiring installation of		
	clamps to seal them, 2) The groove in the bonnet flange of the failed valve		
	was too small so the ring did not fit properly and extra torque was applied to		
	the bolts to create a parallel flange connection (increasing load and risk of		
	galling), 3) Internal leakage between the bonnet flange and clamp assembly		
	caused general corrosion of the stud bolts and a reduction in resistance to		
	caustic SCC when this section of the circulating water circuit was taken out		
	of service for several months in 2011 and 2012, leaving the valve under		
	pressure at relatively low temperature (dead end), 4) When the isolated		
	section of the circuit was returned to service in 2012, the boiler water		
	evaporated, leaving a corrosive residue on the already-degraded stud bolts.		
	Root causes included: 1) Inadequate valve design or fabrication error		
	(bonnet flange groove), 2) Inadequate monitoring and control of boiler water		
	quality (frequent leaks, caustic residue), 3) Inadequate flange management		
	procedures (documentation and communication of bolt torque history), 4)		
	Inadequate risk assessment (condition of bolts, bolt torque load and spread),		
	5) Inadequate repair (bolts at leaking flanges not replaced before clamping).		
Lessons Learned	1) Boiler water/steam leaks tend to concentrate caustic where evaporation		
	occurs causing caustic stress corrosion cracking (SCC) of highly stressed		
	bolts (caustic soda is used for pH control).		
	 White crystalline deposits (caustic residue) on flanges and bolts in leaking boiler water/steam lines may indicate elevated risk of caustic SCC. 		
	3) Injection of sealant into a leak-sealing clamp can increase tensile stress		
	on stud bolts by $10 - 20\%$.		
	4) Leak-sealing clamps should only be installed as a temporary repair (use		
	strong back clamps if bolt condition uncertain) and should be replaced by a		
	permanent repair at the first opportunity (e.g. planned outage or turnaround).		
More Information	1) "Accident Description & Lessons Learned", TEAM [®] Industrial Services,		
	April 2014, Steam explosion during a re-injection into a leak sealing		
	<u>clamp.pdf (belgie.be)</u> .		
	2) "Steam Release", European Process Safety Centre (EPSC), Learning Sheet, December 2017, <u>Flange Leakage (epsc.be)</u> .		
Industry Sector		Process Type	Incident Type
Oil & Gas		Catalytic Reforming	Explosion
Equipment Category		Equipment Class	Equipment Type
Safety & Control		Valves - Actuated	Gate