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As part of offshore maintenance verification, the verifier conducts a review of the maintenance records for each 

asset.  This ensures operators of offshore installations record and trend data for their installations correctly. 

Verification teams currently do this review by selecting a small sample of maintenance records for each 

safety/environmental critical element (SECE).  A small sample is chosen as it is too labour-intensive to review 

all records manually.  However, this approach can lead to unintended bias; for example, by over- or under-
sampling erroneous records.  This reduces the value of the review to the operator: can we implement a time-

efficient and effective way to review a full set of maintenance records? 

In this paper, we present a computational method for analysing large numbers of offshore SECE maintenance 
records.  The method uses a machine learning algorithm to analyse an entire maintenance record set for one SECE 

on an offshore installation.  The algorithm can detect anomalies in the recording of maintenance records to 

produce a “target sample”, allowing the reviewer to focus on records which deviate from the expected 

format/quality, as oppose to a random sample. 

The algorithm automatically produces this target record sample very quickly.  This is computationally efficient, 

allowing thousands of maintenance records to be analysed in a few seconds with a useful accuracy level.  The 
verification engineer can then apply a focussed approach to verification, reducing manual effort and reducing 

potential for human error or bias in sampling.  This increases project efficiency and allows DNV GL to make 

more useful findings and recommendations to the operator. 

Introduction 

The rapid increase in machine learning technology across the oil and gas sector offers offshore operators the chance to automate 

high-cost, error-prone tasks in which the cumulative effects of inconsistency and analytical error can adversely impact safety.  

For instance, as part of any assets’ assurance process, it can be instructive to review maintenance records for insights, 

particularly trending issues and identifying potential improvements. The goal should be to ensure the asset is performing safely 

and effectively, with high reliability while adopting the most cost-effective strategies for all maintenance work. 

The Offshore Safety Case Regulations [ref. 1] place a requirement on offshore operators to have safety and environmental 

critical element (SECE) performance standards in place, and have an independent verifier assure they are being met.  Review 

of the maintenance records is a key element of this task; hence there is a legal obligation, as well as a financial incentive, to 

perform such reviews. 

Maintenance and reliability teams around the UK have adopted various methods to help them review maintenance records for 

each SECE more effectively, for example: 

1. By selecting a small sample of maintenance records for each SECE to review.  A small representative set of data is 

chosen as it is deemed too labour-intensive to manually review all records. This approach can lead to a sampling 

bias in the results. For example, inaccurate maintenance records may be overlooked, reducing the value of this 

process. 

2. Employ a team of people whose sole purpose is to review and track the maintenance records for each asset. Usually 

each person employed for this task is focussed on one SECE or equipment item. This approach has the advantage 

that more maintenance records are reviewed in detail, reducing the sampling bias but potentially leading to human 

bias / error in the results.  This approach also has a high man-cost and time commitment (typically one week every 

month per SECE) in carrying out this type of review using skilled engineers. 

Method 1 above has been traditionally used by independent verifiers, such as DNV GL, when verifying performance standard 

compliance in the UK.   

In order to better analyse a large number of maintenance records in full, a potential solution is to use a machine learning (ML) 

classification algorithm with natural language processing.  Verifiers can then analyse the entire set of maintenance records for 

each SECE on the asset.  They can detect anomalies in the way maintenance records for each SECE have been recorded, 

allowing the reviewer to focus purely on records which have anomalies, as opposed to a random sample method currently used 

by most companies.  Equally, such techniques could be utilised on any dataset for which analysis is repetitive, labour intensive, 

or prone to human error. 

Dataset 

This study considered a single fire and gas detector inspection dataset from an offshore operator.  This is real data, which we 

have anonymised for this study.  We chose this dataset because detectors are common elements offshore – hence there exist a 

lot of maintenance records – and are prone to failure or mis-calibration, so there should be a suitable number of FAIL records 

against which to predict. 

The dataset includes the following key fields, among others: 
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• Work order number, a unique number given to each maintenance or inspection item; 

• Location, identifying the detector, light or circuit being inspected or maintained; 

• Description, which provides a detailed description of the work undertaken, typically completed by the 

technician/engineer responsible;  

• Test result – the “class” – marked as PASS, FAIL or FAILFIX indicating whether the SECE or equipment item 

functioned as expected; 

• Target finish date, when the maintenance or inspection was due to be completed; and 

• Actual finish date, when the maintenance or inspection was completed. 

The location and date fields are useful for secondary calculations, such as reliability and availability of detector types over 

time.  Reliability being whether the detector functioned on demand, and availability being a measure of downtime.  Comparison 

of target and actual finish dates gives a measure of the work deferral rate.  This paper does not consider such calculations 

further as they are relatively simple to implement once the test results are known. 

Instead, this work considers only the description field: a free-text field in which the test and the result are typically described.  

Using a combination of natural language processing and machine learning (support vector machine) algorithms, we explore 

the question: can a computer predict the test result by analysing the text? 

The dataset contains 2,119 records in total, covering a period from April 1992 to May 2018.  However, the vast majority of 

the records (2,036) are for the years 2008–2012, as illustrated in the table below: 

Table 1. Work order counts in test dataset by year and recorded class. 

Recorded class 1992–1999 2007 2008 2009 2010 2011 2012 2013+ TOTAL 

PASS - - - 401 396 381 256 25 1459 

FAIL - - - 11 11 15 3 - 40 

Unclassed 28 30 452 - - 18 92 - 620 

Total 28 30 452 412 407 414 351 25 2119 

We note some important features of the dataset at this stage.  First, there are very few FAIL records overall, approximately 

2% of the total (3% of the classed records).  This means we have a highly skewed dataset, with few examples of the FAIL 

class.  This could make fitting a machine learning model difficult. 

Second, approximately 30% of the records are unclassed, that is they do not a have recorded test results.  We cannot use those 

records to train a machine learning model, hence our available training data reduces to 1,499 records, which is still a sufficient 

number when considering two classes only (PASS and FAIL).  There could be several reasons why the test results are not 

recorded, for example a change in management system could mean the previous results were not carried forward into the new 

system.  In such cases, the method presented here can assist operators reconstruct the missing data. 

Data classes 

A common feature of SECE management records across all operators is a column indicating the test results, usually in terms 

of performance standard compliance, but not exclusively.  In machine learning terms, the test result is the class we are 

attempting to predict from the data features. 

The simplest recording system is simple a PASS/FAIL flag.  More complex systems have codes for FAILFIX1, or several 

FAIL codes to indicate the failure type.  This study classifies all FAILFIX and complex failure codes as FAIL only, to simplify 

the classification model.  This approach is sufficient to support verification activity, though 2nd party activities supporting 

operations more require a finer approach. 

Generally, the PASS/FAIL criteria are determined by the SECE performance standards, which form the basis of the verification 

activity.  However, performance standard criteria can be complex, particularly for installation with diverse detection systems.  

For example, the criteria may allow for failure of 1–2 detector heads in an area, as long as sufficient coverage is maintained 

by other detectors.  This can make ML predictions based on natural language processing exceptionally difficult.  Consider the 

theoretical inspection record text covering four detector heads: 

“Detector | Result 

-------- | ------ 

GD-A Pass 

GD-B Fail 

                                                      
1 FAILFIX denotes a failure which was immediately fixed, before the log was updated.  This study considers all FAILFIX as 

FAIL for assessment purposes. 
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GD-C Pass 

GD-D Pass” 

Is the overall class PASS, because 75% of the heads function, or FAIL because there is a single failure?  That depends on the 

performance standard criteria, which can differ across assets, and even for a single asset if different areas have different criteria.  

This study does not codify the performance standards in such detail, but instead applies a simple approach: if something looks 

like a fail, it is a fail.  Hence the above record would be classed as FAIL regardless of the performance standard.  It turns out 

this approach is sufficient to support the verification engineer, who can make a quick comparison of flagged records against 

the standards.  We plan to improve the text analysis and investigate performance standard comparison as future work. 

Methodology 

This study uses a linear support vector machine (SVM) algorithm [ref. 3] to classify inspection records based on the free-text 

field.  Records are classed PASS or FAIL as described above.  We used the open-source Python package scikit-learn (version 

0.19.2) [ref. 1] for this work, which implements a linear SVM classifier with stochastic gradient descent learning [ref. 5].  A 

machine learning classification model is an example of supervised learning.  This paper does not present in detail the function 

of SVM models, descriptions of which are widely available online and elsewhere.  In broad terms, a classification model 

predicts a class for each dataset record, given the features of the record.  In this study, the class is the PASS/FAIL flag discussed 

above.  The record features are numerical properties derived from the free-text field.  Feature derivation is discussed below. 

The overall method used in this study is: 

1. Split the dataset into training and testing subsets; 

2. Pre-process the dataset (data cleaning); 

3. Derive numerical features using natural language processing; 

4. Train a classification model on a training subset; 

5. Predict training subset classes to evaluate model performance;  

6. Revise feature derivation and model parameters to improve fit (repeat from step 2 as necessary); 

7. Predict testing subset classes to evaluate overall model performance; and 

8. Estimate SECE or equipment availability and reliability (not considered further in this study). 

Each of these steps are detailed in the following subsections.  We implemented the above as a Python (version 3.6) program. 

Data cleaning 

Prior to using a ML model, the dataset must be processed.  ML models typically describe data by a reduced feature set; where 

a feature is a numerical property of the record.  The data cleaning process (pipeline) transforms the raw maintenance text data 

into the limited feature set.  Figure 1 shows the cleaning pipeline applied for this study. 

The first step is to merge all relevant text fields into a single block of text.  Our dataset contained only a single text column, 

so we skipped this step. 

The second step is to remove boilerplate text.  By boilerplate, we refer to text appearing in all – or almost all – text records 

which does not describe the test result.  Most often this is a copy of the work-order instruction, or some other note for the 

person undertaking the work.  Such text can significantly influence the predictive power of the resultant model, as considered 

in the results section below.  Unfortunately, the boilerplate text is generally specific to each operator and SECE, hence a 

custom data cleaning pipeline is required for each.  For this study, we manually reviewed the records to determine the form of 

the boilerplate text, and compiled a list of 39 unique sentences/phrases to be excluded from the data.  We implemented the 

boilerplate removal function using Python regular expressions [ref. 6] to ensure any case or whitespace typographical errors 

were captured. 

The third step is to remove stop words from the text, as defined in the Natural Language Toolkit (NLTK; version 3.4) [ref. 7].  

Those words – such as the, and, so et cetera – are common and therefore provide limited predictive value.  Removing them 

prevents them being falsely identified as important features when training the classifier. 

The fourth step is to stem words to further reduce the potential feature set.  This study used the Porter stemmer implemented 

in NLTK.  Stemming strips suffixes from words so they reduce to their root sense.  For example, “failed”, “failing”, “failure” 

all become “fail”.  The sense is the same in all cases; they differ only grammatically. 

The final cleaning step applied here is to isolate known vocabulary with white space.  This reduces training problems associated 

with mis-typed words, for example “DET1Pass” becomes “DET1 Pass” – as we know the word “pass” is likely an important 

feature. 

The cleaning pipeline is the most time-consuming part of the program to construct as there are many ways in which a human 

could mis-type or otherwise make a mistake.  We could envisage adding additional steps too, for example a spelling-corrector.  

The importance of maintaining a high-quality dataset for the purposes of machine learning cannot be overstated. 
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Figure 1.  Pre-processing pipeline (data cleaning) 

 

Feature derivation 

The final step in the cleaning pipeline in figure 1 derives the numerical features on which the classification model trains and 

predicts.  This study uses the weighted frequencies of words in the text description field as the data features.  We used the 

scikit-learn term frequency inverse document frequency (TF-IDF) normalization [ref. 12] for this purpose.  This weights the 

word frequency by the inverse of its frequency in all records, hence less-common words are weighted relatively higher than 

more-common ones. 

The scikit-learn TF-IDF vectorizer allows definition of a custom vocabulary to limit the words considered.  If no vocabulary 

is provided, the vectorizer uses the whole vocabulary derived from all words in the dataset.  We initially ran the model training 

using the whole dataset vocabulary, whereupon it appeared the model was basing prediction on certain artificial terms.  For 

example, it would weight highly terms like “fr2”, “s02”, “a101” etc.  Such terms, we realized, are parts of the detector 

identification numbers.  While this may be a useful result, in that we can identify particular detectors or detector circuits prone 

to failure, these terms are of limited value when creating a generic classification model.  Hence, we derived a limited 

vocabulary based on the important, yet common, words in the dataset. 

We applied three vocabulary filtering techniques to determine whether limiting the word-sets, using knowledge of the 

maintenance process, could improve the accuracy of the ML predictions.  These vocabularies (a–c) are: 

a. Classify records based on the frequency of all words in the dataset (minus the boilerplate stop words).  After 

boilerplate and stop word removal, the F&G dataset contained approximately 1,200 unique “words”, though that 

includes the detector IDs. 

b. Classify records based on the frequency of a limited vocabulary (words and phrases – note, these are already 

stemmed): FAIL, PASS, ALARM, SCADA, OPER, RAIS, RESPOND, FOLLOW, ERR, NFF, “ALL OTHER”, 

RECTIFI, CONTAMIN, UNABL, SUSPECT, LEAK, CHANG, REPLAC, AVAIL, REPAIR, “WAS OK”, NOT, 

RESPOND, ANOMALI, ROUTIN, NO, FAULT, “NO FAULT”, COMPLET, ALL, ADJUST, ASSUR, and 

FUNCTION; and 

c. Classify records based on the frequency of two words only: PASS and FAIL; 
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Model training 

A machine learning model must be trained to make predictions.  The training step uses a subset of the data as a basis and the 

ML model uses the training subset to determine its internal parameters to make predictions.  For example, a SVM model 

determines weights for each data feature to calculate an overall score for each record.  Records with a net-positive score are 

classed PASS; those with a net-negative score are classed FAIL.  Words with higher predictive power will have a higher 

absolute score; this allows us to observe the most important words. 

We noted above, the dataset is heavily skewed towards PASS records; 97% of classed records are PASS, 3% are FAIL.  

Applying a simple classification training to this dataset will be heavily biased towards PASS, simply because 97% of the time 

the model will think a record is PASS regardless of the features.  To counteract this bias, the model applies a class weighting, 

inversely proportional to the rate of occurrence of each class in the training dataset.  This increases the relative prediction score 

of features common to FAIL records. 

For this study we used 75% of the records to train the models, and the remaining 25% to test the predictions.  We made a key 

assumption about the data at this stage, which was tested later: the reported PASS and FAIL values are either accurate, or the 

errors are few and randomly distributed.  If the errors are randomly distributed, then this should appear as noise in the prediction 

(the prediction accuracy will be lower, but it won’t be systematically wrong).  If the errors are not randomly distributed, for 

example if the operator is systematically mis-recording PASS and FAIL, then the prediction will exhibit the same skew.  To 

evaluate this, we undertook a manual verification of the full supplied dataset. 

To ensure a uniform training set, we constrained the randomized training/testing sampling to ensure the proportion of PASS 

and FAIL records in each matched the proportions in the total dataset. 

Predictions 

We split the dataset into training and testing subsets as a guard against over- or under-fitting.  If the model is over-fitted to the 

training data, it will give excellent predictions on the training data, but poorer predictions on the testing data.  If the predictions 

on the training and test data show similar distributions, then we have more confidence in the capability of the model when 

applied to other, similar datasets. 

This paper presents prediction results as 2×2 “confusion matrices”, which are read row-wise: each row represents a recorded 

class (PASS or FAIL), each column presents a predicted class.  The cell values are the row-summed percentages of records 

predicted as PASS or FAIL.  When there are few mis-predictions (low confusion) then the matrix has a strong backwards 

diagonal (top-left to bottom-right).  When the confusion is high, the cell values are closer in value.  Confusion matrices can 

present many classes together, but here we are interested in only two. 

Results 

Figure 2 shows the confusion matrices for the three vocabularies when training on the full text descriptions in the F&G detector 

dataset (including boilerplate text), using the PASS/FAIL classes as assigned by the operator (unverified).  Using all words, 

or a limited vocabulary, achieves ~95% match of PASS records, though worse for FAIL records.   

Prediction using only the words “pass” and “fail” is particularly poor.  This is because the boilerplate text contains many 

instances of those words as notes to the operator.  For example, the below sentence is repeated in most records:  

“N.B. If the first head tested fails then repeat the test for the next head alphabetically until a head passes the test” 

Such text masks the true text features, decreasing the predictive power of the model. 

Comparing the training and text data predictions for vocabularies (a) and (b) only, there is a good correspondence when 

predicting on the reported PASS records.  However, the model completely fails to distinguish reported FAIL records in the 

test data.  This suggests the model is over-fitted to the training data, as it does not work for the test data at all. 
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Figure 2.  Prediction matrices using different vocabularies (a–c) on unverified classes, boilerplate included  

(a) Using all words to define features 

 

(b) Using a limited vocabulary of features 

 

(c) Using “pass” and “fail” only as the features 

 

Figure 3 presents the confusion matrices for the same data as figure 2, except this time with all identified boilerplate text 

removed.  There is a marked improvement in the predictions using all vocabularies, and far better agreement between the 

training and test data predictions. 
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Vocabulary (c) – “pass” / “fail” only – now provided a good 98% accuracy when matches reported PASS records, though is 

less good at predicting reported FAIL records (~70%).  Of course, there are very few FAIL records in the test dataset (10) as 

there are very few in the overall data. 

The predictions for vocabularies (a) and (b) are good at ~93–98%.  This accuracy level is already sufficient to guide the 

offshore verifier, and to significantly improve usefulness of conclusions to the operator.  Using all words, vocabulary (a), 

achieves a 93% accuracy on PASS records, and correctly matches all FAIL records even in the test dataset.   

Reducing the vocabulary (b) further improves the prediction on PASS records, though it mis-matches one FAIL records in the 

test dataset.  Manual inspection of that records revealed it covered six gas detector heads: three passed inspection and three 

were unavailable due to temporary ducting.  Hence, while three heads did not technically fail, they were nevertheless 

unavailable and hence the initial FAIL class is correct, and the model prediction is in error.  This highlights the process by 

which the ML predictions can focus verifier effort. 

Figure 3.  Prediction matrices using different vocabularies (a–c) on unverified classes, boilerplate removed 

(a) Using all words to define features 

 

(b) Using a limited vocabulary of features 
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(c) Using “pass” and “fail” only as the features 

 

Typically, a verifier will be more interested in reported PASS records which the ML model predicts as FAIL, because that 

suggested an under-reporting of potential problems.  Considering only the limited vocabulary (b), the model predicted 2% of 

the test dataset PASS records to actually be FAIL; this equates to eight records in total.  The next section discusses manual 

verification of the dataset to improve predictions; here we considered the verified classes of the test record discrepancies. 

Table 2. Test records reported as PASS but predicted as FAIL 

Record Record description summary2 Reported 

class 

Predicted 

class 

Verified 

class 

MP653865 Gas detectors all passed function tests but failed to 

communicate with control room (link down).  The DNV GL 

verifier marked this as a fail. 

PASS FAIL FAIL 

MP654456 As above. PASS FAIL FAIL 

MP654876 As above. PASS FAIL FAIL 

MP653708 As above PASS FAIL FAIL 

MP661933 One out of four heat detectors failed its function test.  Whether 

this counts as a performance standard failure is unknown, 

nevertheless it should have been flagged therefore the 

DNV GL verifier marked this as a fail. 

PASS FAIL FAIL 

MP667139 Record indicates no fault found, hence DNV GL verified it as 

a pass, and the ML prediction is incorrect. 

PASS FAIL PASS 

MP639638 Four out of eight heat detectors failed function tests and were 

replaced, testing successful upon replacement.  The DNV GL 

verifier marked this record as a fail as it should have been fail-

fix, not pass. 

PASS FAIL FAIL 

MP648676 As above, one out of four heads failed and was immediately 

replaced. 

PASS FAIL FAIL 

Of the eight records above, the ML prediction agreed with the human verifier for seven, highlighting the power of this 

approach to improve the verification activity. 

                                                      
2 The record description is summarized here to ensure it is anonymous. 
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Table 3. Non-zero feature counts for each dataset/model. 

Dataset Boilerplate Total word count Non-zero features 

(vocabulary a) 

Non-zero features 

(vocabulary b) 

Non-zero features 

(vocabulary c) 

As 

provided 

Included 1501 99 22 1* 

Excluded 1279 73 17 2 

Manually 

verified 

Included 1645 87 22 2 

Excluded 1450 87 19 2 

* For the unverified dataset with boilerplate included, vocabulary c made predictions based only on the occurrence of the 

word “fail”. 

Manual verification 

To verify if our initial assumption is correct, that the recorded dataset included only a few random errors, an offshore verifier 

at DNV GL performed a manual verification of the entire dataset (2,119 records).  The verifier review identified 37 (of 1459) 

records marked as PASS which should have been FAIL, and 3 (of 40) records marked FAIL which were really PASS.  Figure 

4 shows the row-wise confusion matrix for the manual verification.  This gives a mis-reporting rate of 2.7%.  Anecdotally 

from past experience, we anticipated a mis-reporting rate of 5–10%, hence the verified rate appears good.  Nor does there 

appear to be a systematic bias in the mis-reporting, which would typically be shown as a higher fraction of PASS records 

verified as FAIL (indicating an under-reporting of potential problems).  In this dataset, it appears there are fractionally more 

FAIL records verified as PASS, however, the very small number of FAIL records means we cannot draw a strong conclusion 

here.  Including previously unclassed records, DNV GL determined 6% of the records to be FAIL, and 94% PASS.  This 

compares to 3% / 97% for the unverified records, suggesting a slight under-reporting of fails.  

Table 4. Verified record counts 

Reported class Verified PASS Verified FAIL Total 

PASS 1422 37 1459 

FAIL 3 37 40 

UNCLASSED 565 55 620 

Total 1990 129 2119 

Percentage 94% 6% 100% 

Overall, the manual verification gives us confidence in the predictions based on the unverified dataset.  Nevertheless, we re-

trained the model using the verified classes. 
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Figure 4. Manual record verification error matrix 

 

Figure 5 shows the confusion matrices using the verified classes, with boilerplate removed.  We now have a larger sample of 

FAIL records as the verifier identified PASS records which should be FAIL, and assigned classes to the previously unclassed 

records.  We therefore anticipate an improvement in the predictive power of the model. 

When using all words, vocabulary (a), the PASS predictions are similar to the unverified dataset, but the FAIL predictions 

show a deterioration in the test dataset.  This suggests the model is overfitting, probably because it is using too many text 

features.  Limiting the features, vocabulary (b), now shows a marked improvement over using all words, and good agreement 

between the training and test datasets.  There is perhaps still a slight over-fitting, as the test agreement is slightly worse than 

for the training dataset, but in general the fit is good at 97% accuracy. 

The final vocabulary (c) using the words “pass” and “fail” only now shows a poor ability to fit the PASS records, though 

improved fit to FAIL records.  Models based on this very simple vocabulary appear very sensitive to the available training 

data, suggesting they are under-fit. 

Figure 5.  Prediction matrices using different vocabularies (a–c) on verified classes, boilerplate removed 

(a) Using all words to define features 
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(b) Using a limited vocabulary of features 

 

(c) Using “pass” and “fail” only as the features 

 

Considering the vocabulary (b) results, the model predicted 3% FAIL where the verifier had marked PASS, which equates to 

29 records.  It is possible the verifier also mis-reported, as reviewing over 2000 records is a repetitive task prone to human 

error.  However, upon further inspection the records were found to indicate PASS as verified, which suggests there is still 

room to improve the model predictions if necessary.  The ML model particularly has difficult correctly predicting records with 

limited text.  For example, it consistently marked records as FAIL which had only the following description: 

“4 monthly function tests completed. N.F.F.” 

where N.F.F. means “no fault found”.  While it is relatively quick for a verifier to determine this as a pass, the objective of 

this work is to focus effort on potential discrepancies in the records.  Such records could be screened out by including a simple 

text-search step prior to the ML model, or if the operator includes more detail in the records themselves.  DNV GL intend to 

further refine this approach as we roll it out across our verification services. 

Conclusions 

This work demonstrates that a trained SVM algorithm can rapidly identify records with potential anomalies, although the 

predictive power is dependent on the pre-processing cleaning steps, particularly removal of boilerplate text.  We can gain 

additional prediction improvements by limiting the feature set to a known vocabulary of important words and phrases, 

informed by expert knowledge.  This method works well, even for highly skewed datasets with few recorded fails. 

This method gives maintenance and reliability teams a more focussed approach to check records by specifically targeting the 

anomalous maintenance records.  Crucially, by reducing the amount of time spent reviewing non-erroneous maintenance 

records, this approach increases project efficiency and allows more useful findings and recommendations to be made.  

DNV GL intend to progressively roll-out this approach to all offshore verification activities based in Aberdeen area over the 

near future. 

As part of this work, we identified several pitfalls, particularly in the way operators currently record their data.  As data 

analytics becomes more prevalent in the offshore oil & gas industry, we anticipate these issues will be of greater importance: 
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1. Where possible, operators should store numerical test results as separate fields in the management system, 

particularly those results directly related to performance standard criteria.  This will greatly simplify subsequent 

machine analysis and trending. 

2. Operators should consider revising how they report tests in their management systems, particularly to remove 

boilerplate text (notes to operators, work order instructions etc.)  Such text detrimentally impacts the predictive 

power of the ML models, and its removal is an initially laborious process, as it requires a human to parse the records. 

3. Where possible, operators could revise existing records, with additional fields, to facilitate future verification and 

trending activities.  Data analytic/machine learning techniques such as presented here can support such activities by 

automatically filling in missing data. 

4. Training the offshore workforce on the potential use of the maintenance logs for trending, and how they can facilitate 

this, could also be a worthwhile endeavour. 

Performing quality checks and data audits is just one application for this methodology.  We can combine the resultant 

predictions with availability and reliability calculations to help operators trend their asset performance over time, potentially 

identifying areas for improvement or efficiency gains.  This approach also enables operators to reconstruct data missing from 

their management systems, as well as identify potential systemic mis-reporting issues. 
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Software 

This study used publicly available Python packages for data-processing, machine learning and plotting.  The table below lists 

all packages used. 

Table 5. Python software packages used 

Software package Version Software package Version 

Python 3.6.6 Numpy 1.13.3 

Matplotlib 2.0.2 Pandas 0.23.4 

NLTK (natural language toolkit) 3.3.0 Scikit-learn 0.19.2 
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