

Appendix 2. Peak side-on over-pressure v. distance

THE THRUST ON THE SUPPORTS OF A TWO CHAMBER VESSEL WHEN THE BURSTING DISC IN THE DUCT CONNECTING THE CHAMBERS IS RUPTURED

W H L PORTER

A method is presented for estimating the A mimum thrust on the supports of a
reactor vessel connected by way of a duc
to a container vessel when the bursting
disc in the duct is ruptured. The method
is based on an examination of the acceleration
of the centre of gravity of the contents of the vessels.

INTRODUCTION

Many hazardous reactions on the chemical industry are performed in autoclave reactor vessels which can be relieved from the effects of overpressure by a bursting disc. Since the contents of the reactor may be toxic or inflammable it is often connected by a duct containing the bursting disc to a container vessel, environment. When the bursting disc first fails a force will be transmitted to the restraining structure supporting the vessels and it is the purpose of this report to examine the behaviour of the contained gases when rupture of the bursting disc first occurs and the size of the resulting thrust on the structure The investigation was stimulated by the work of Dr W A Woods and his co-workers. (Ref 4 and 5).

THE BEHAVIOUR OF THE CONTAINED CASES

This paper develops the argument for an ideal gas which can however have an entirely different composition either side of the bursting disc. When the disc first ruptures a shock wave travels downstream towards the container vessel from the bursting disc. This shock wave becomes steeper and sharper as it progresses. At the same time the high pressure end of a this rarefaction wave becomes ever more extended as it progresses and indeed with higher initial pressure ratios between the two vessels the low pressure end of the rarefaction wave moves in the opposite direction to the high pressure end; in other words, the wave elongates in such a way that its high
pressure end is moving towards the reactor vessel and its low pressure end towards the container vessel.

This paper argues that since there is no external thrust from ejected material from the total system, the thrust on the supports must equal the mass of enclosed material times the acceleration of its centre of gravity (Newtons Law), or if the vessels will move in such a way that the centre of gravity remains motionless.

The interface between the two gases, which is determined initially by the position of the diaphragm, moves towards the container vessel immediately after the diaphragm is ruptured The pressure and velocity, but not the temperature, are considered to be identical on either side of the contact mixing occurs across the surface.

It follows that:

$P_{2}=P_{3}$
and also since the velocity of gas is identical on either sid of the contact surface

$$
\mathrm{U}_{2}=\mathrm{U}_{3}
$$

Now the relationships for the velocity of a gas behind a shock front and behind an expansion front are well-known and shock front and behind an expans

$$
\begin{equation*}
U_{2}=a_{1}\left(\frac{P_{2}}{P_{1}}-1\right) \sqrt{\frac{2 / \gamma_{1}}{\left(\gamma_{1}+1\right) \frac{P_{2}}{P_{1}}+\left(\gamma_{1}-1\right)}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{3}=\frac{2 a_{4}}{\gamma_{4}^{-1}}\left[1-\left(\frac{P_{3}}{P_{4}}\right)^{\gamma_{4}-1}\right]^{2 \gamma_{4}} \tag{3}
\end{equation*}
$$

From which it follows that:-

$$
\frac{P_{4}}{P_{1}}=\frac{P_{2}}{P_{1}}\left[1-\frac{\left(\gamma_{4}-1\right)\left({ }^{a_{1}} / a_{4}\right)\left(\frac{P_{2}}{P_{1}}-1\right)}{\sqrt{4 \gamma_{1}{ }^{2}+2 \gamma_{1}\left(\gamma_{1}+1\right)\left(\frac{P_{2}}{P_{1}}-1\right)}}\right]^{\frac{2 \gamma_{4}}{\gamma_{4}-1}}
$$

where

$$
a_{1}=\sqrt{\frac{r_{1} P_{1}}{\rho_{1}}}: a_{4}=\sqrt{\frac{r_{4} P_{4}}{\rho_{4}}}
$$

Also it can be shown:
$\frac{T_{3}}{T_{4}}=\left(\frac{{ }_{P}}{P_{4}}\right)^{\frac{r_{4}-1}{r_{4}}}=\left[\frac{{ }_{P} / P_{1}}{P_{4}}\right]^{\frac{r_{4}-1}{r_{4}}}$
Note $P_{2}=P_{3}$
Also
$\frac{T_{2}}{T_{1}}=\frac{(\gamma-1) P_{2}+(\gamma+1) P_{1}}{(\gamma+1) P_{2}+(\gamma+1) P_{1}}$
For the shock front

$$
U_{s}=a_{1} \sqrt{\frac{1}{2 \gamma_{1}}\left[\left(\gamma_{1}-1\right)+\left(\gamma_{1}+1\right) \frac{P_{2}}{P_{1}}\right]}
$$

And for the expansion wave
$u_{r}^{+}=-a_{4}$
$U_{r}^{-}=-a_{4}+\frac{\gamma+1}{2} U_{p}$
where $U_{p}=U_{2}=U_{3}$
Also
$\frac{\rho_{3}}{\rho_{4}}=\left(\frac{P_{3}}{P_{4}}\right)^{\frac{1}{\gamma_{4}}}$
and

$$
\begin{equation*}
\frac{\rho_{2}}{\rho_{1}}=\frac{(\gamma+1) P_{2}+(\gamma-1) P_{1}}{(\gamma+1) P_{1}+(\gamma-1) P_{2}} \tag{12}
\end{equation*}
$$

It is to be noted that the velocities, densities and pressures of each zone are constant in time.

I. CHEM. E. SYMPOSIUM SERIES NO. 71

Now the acceleration of the centre of gravity of the gas will be considered:

After time t the situation is as in Figure 1 where:
$d_{1}=L_{2}: d_{2}=U_{r}^{+} t: d_{3}=\left(U_{r}^{-}-U_{r}^{+}\right) t: d_{4}=\left(U_{p}^{-U_{r}^{-}}\right) t$
$d_{5}=\left(U_{s}-U_{p}\right) t \& d_{6}=\left(L_{1}-U_{s} t\right)$
Also assuming the density in the rarefaction wave changes linearly with distance along its length.

$$
d_{3}^{\prime}=\frac{d_{3}}{3}\left[\frac{\rho_{3}+2 \rho_{4}}{\rho_{3}+\rho_{4}}\right]
$$

Taking movements for the gas about $0-0$
${ }^{-\rho} \rho_{1} v_{1} x_{1}+\rho_{1} A_{t} \frac{d_{6}^{2}}{2}+\rho_{2} A_{t} d_{5}\left[d_{6}+\frac{d_{5}}{2}\right]+\rho_{3} A_{t} d_{4} d_{6}+d_{5}+\frac{d_{4}}{2}$
$\ldots+\frac{\rho_{3}+\rho_{4}}{2} A_{t} d_{3}\left[d_{6}+d_{5}+d_{4}+\frac{d_{3}}{3}\left(\frac{\rho_{3}+2 \rho_{4}}{\rho_{3}^{+\rho} 4}\right)\right]+\ldots$
$\ldots+\rho_{4} A_{t}\left[d_{2}+d_{1}\right]\left[d_{6}+d_{5}+d_{4}+d_{3}+\frac{d_{2}+d_{1}}{2}\right]+\rho_{4} V_{4} X_{4}=M X_{g}$
Substituting for d_{1} to d_{6}
$-\rho_{1} v_{1} x_{1}+\rho_{1} A_{t}\left[\frac{L_{1}-U_{s} t}{2}\right]^{2}+\rho_{2} A_{t}\left(U_{s}-U_{p}\right) t\left[L_{1}-\frac{U_{s} t}{2}-\frac{U_{p} t}{2}\right]+$
$\ldots+\rho_{3} A^{A}\left[U_{p}-U_{r}^{-}\right] t\left[L_{1}-\frac{U_{p}^{t}}{2}-\frac{U_{r}^{-}}{2}\right]+$
$\ldots+\frac{\rho_{3}^{+\rho} 4}{2} A_{t}\left[U_{r}^{-}-U_{r}^{+}\right] t\left[L_{1}-U_{r}^{-} t+\left(\frac{U_{r}^{-}-U_{r}^{+}}{3}\right)_{t}\left[\frac{\rho_{3}+\rho^{\rho}}{\rho_{3}^{+\rho} 4}\right]\right]+\cdots$
$\ldots+\rho_{4}{ }^{A} t\left[U_{r}^{+} t+L_{2}\right]\left[{ }_{L_{1}}+\frac{L_{2}-U_{r}^{+}}{2}\right]+\rho_{4} v_{4} X_{4}=M X_{g}$

Differentiating this equation twice with respect to t
$\rho_{1} A_{t} U_{s}^{2}-\rho_{2} A_{t}\left(U_{s}^{2}-U_{p}^{2}\right)-\rho_{3} A_{t}\left(U_{p}^{2}-\left(U_{r}^{-}\right)^{2}\right)-\cdots$
$\ldots-A_{t}\left(\frac{U_{r}^{-}-U_{r}^{+}}{3}\left[U_{r}^{-}\left(2 \rho_{3}^{+\rho} 4\right)+U_{r}^{+}\left(\rho_{3}+2 \rho_{4}\right)\right]-\ldots\right.$
$\ldots-\rho_{4} A_{t}\left(U_{r}^{+}\right)^{2}=M \ddot{X}_{g}$
Now force F_{A} on support $=M \ddot{X}_{g}$ which is constant
Now consider an element of gas of mass m whose boundaries rest at each end of the tube in undisturbed gas and let the centre of gravity of this gas be at a distance y from $0-0$.

Then taking moments for this gas and differentiating twice we find that equation (17) is modified as follows:

$$
\rho_{1} A_{t} U_{s}^{2}-\rho_{2} A_{t}\left(U_{s}^{2}-U_{p}^{2}\right)-\rho_{3} A_{t}\left(U_{p}^{2}-\left(U_{r}^{-}\right)^{2}\right)-\cdots
$$

$$
\begin{equation*}
\ldots-A_{t}\left(\frac{U_{r}^{-}-U_{r}^{+}}{3}\right)\left[U_{r}^{-}\left(2 \rho_{3}+\rho_{4}\right)+U_{r}^{+}\left(\rho_{3}+2 \rho_{3}\right)\right]-\ldots \tag{18}
\end{equation*}
$$

$\ldots-\rho_{4} A_{t}\left(U_{r}^{+}\right)^{2}=m \ddot{Y}$
So $\underset{g}{\ddot{X}}=m \ddot{y}$
But considering the forces acting on the mass m
$\left(P_{4}-P_{1}\right) A_{t}=m \ddot{y}$
The above calculations indicate that if the change in position with time of the centre of gravity of the gas is traced by taking moments, and is then integrated twice to constant, at least until either of the waves meets the end of the duct, assumed to be of constant cross-section area. The acceleration being constant, the thrust on the supports is also constant and is closely approximated by the simple relationship.

Thrust on support $=\left(P_{4}-P_{1}\right) A$
Moreover, since friction and mixing can only serve to reduce the acceleration, this thrust is a maximum.

The thrust from equation (16) where $F_{A}=M X_{g}$ and from equation (20) where $F_{B}=\left(P_{4}-P_{1}\right)$ A are given in Table 1 , which does not give an exact identity for F_{A} and F_{B} because which does not give an exact identity for F_{A} and F_{B} because
of the linear approximation for density change in the 5 th term of equation 15

I. CHEM. E. SYMPOSIUM SERIES NO. 71

If the reactor vents to the atmosphere then from reference 3, the thrust for subcritical conditions is given by:

$$
\begin{equation*}
\frac{F_{c}}{P_{4} A_{t}}=\frac{2 \gamma_{4}}{\gamma_{4}-1}\left(\frac{P_{a}}{P_{4}}\right)^{\frac{1}{\gamma_{4}}}\left[1-\left(\frac{P_{a}}{P_{4}}\right)^{\frac{\gamma_{4}-1}{\gamma_{4}}}\right] \tag{22}
\end{equation*}
$$

This equation applies for a pipe with a divergent outlet provided A_{t} is supplied as the outlet and not the pipe area. For critical conditions:

$$
\begin{equation*}
\frac{F_{c}}{P_{4}{ }_{t}}=2\left(\frac{2}{\gamma_{4}+1}\right)^{\frac{1}{\gamma_{4}-1}}-\frac{P_{a}}{P_{4}} \tag{23}
\end{equation*}
$$

If the flow remains critical and an expansion piece is formed in the release pipe. Then it is of interest to note that the thrust F is given by:

$$
\begin{align*}
& \quad \frac{F}{P_{4} A_{t}}=r_{4} \sqrt{\frac{2}{r_{4}-1}\left(\frac{2}{r_{4}+1}\right)^{\frac{r_{4}-1}{r_{4}^{-1}}}\left[1-\left(\frac{P_{e}}{P_{4}}\right)^{\frac{r_{4}-1}{r_{4}}}\right]+\cdots} \tag{24}\\
& \ldots+\frac{A_{e}}{A_{t}}\left(\frac{P_{e}}{P_{4}}-\frac{P_{a}}{P_{4}}\right)
\end{align*}
$$

where P_{e} is the pressure in the gas at exit and A_{e} is the maximum thrust for a divergent outlet is given when the area of exit is such that the exit gas pressure P_{e} is identical to the environmental pressure P_{a} and the thrust is then given by:

$$
\begin{equation*}
\frac{F_{D}}{P_{4} A_{t}}=r_{4} \sqrt{\frac{2}{r_{4}-1}\left(\frac{2}{r_{4}+1}\right)^{\frac{r_{4}-1}{r_{4}+1}}\left[1-\left(\frac{P_{a}}{P_{4}}\right)^{\left.\frac{r_{4}-1}{r_{4}}\right]}\right.} \tag{25}
\end{equation*}
$$

I. CHEM. E. SYMPOSIUM SERIES NO. 71

For critical flow in the pipe the ratio of the pipe area to the outlet area is then given by ($\operatorname{Ref} 6$):-

$$
\begin{equation*}
\frac{A_{t}}{A_{e}}=\left(\frac{r_{4}+1}{2}\right)^{\frac{1}{r_{4}-1}}\left[\frac{r_{4}+1}{r_{4}-1}\left[\left(\frac{P_{a}}{P_{4}}\right)^{\frac{2}{r_{4}}}-\left(\frac{P_{a}}{P_{4}}\right)^{\frac{r_{4}+1}{r_{4}}}\right]\right]^{\frac{1}{2}} \tag{26}
\end{equation*}
$$

All four thrusts $F_{A^{\prime}}, F_{B^{\prime}}, F_{C}$ and F_{D} are given in Table 1 for a range of pressure conditions and also the exit area ratio required to give maximum thrust with a complete break in the connecting duct.

As is to be expected the thrust resulting from a complete rupture of the duct significantly exceeds the thrust from the enclosed system. It also may be noted that the thrust is independent of the volumes of the reactor and container vessels and the total mass content. Moreover not unexpectedly the thrust is proportional to the area of the duct.

CONCLUSION

A method is submitted for calculating the initial thrust on the supports of a totally enclosed system within which two vessels the reactor and the container are connected by a duc thrust when the disc first ruptures is significantly lower than for a free jet flow from the duct and its maximum value closely satisfies the simple equation:-

Thrust $=\left(P_{4}-P_{1}\right) A$

RESULTS FROM COMPUTER CALCULATIONS

Pressure bars $10^{5} \mathrm{~N} \mathrm{~m}^{-2}$								
Case No	P_{1}	P_{2}	P_{3}	P_{4}	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}
1	1.013	1.013	1.013	1.013	1.177	1.777	1.777	1.777
2	1.013	1.340	1.340	1.793	1.177	1.435	1.691	2.082
3	1.013	1.407	1.407	2.077	1.177	1.496	1.826	2.355
4	1.013	1.883	1.883	3.725	1.177	1.820	2.659	4.331
5	1.013	2.026	2.026	4.398	1.177	1.912	2.936	5.108
6	1.013	2.157	2.157	2.166	1.177	1.994	3.149	5.885
7	1.013	2.491	2.491	7.095	1.177	2.191	3.902	8.240
8	1.013	2.885	2.885	10.135	1.177	2.406	4.799	11.770
9	1.013	3.040	3.040	11.535	1.177	2.484	5.167	13.393
10	1.013	4.101	4.101	25.338	1.177	2.962	8.014	28.425
11	1.013	5.068	5.068	46.553	1.177	3.317	11.089	54.060
12	1.013	7.095	7.095	138.377	1.177	3.894	19.254	160.660

1. CHEM. E. SYMPOSIUM SERIES NO. 71

TABLE 1 (Continued)
RESULTS FROM COMPUTER CALCULATIONS
Temperature ${ }^{\circ} \mathrm{K} \quad$ Velocities ms^{-1}

Case No	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$	$\mathrm{~T}_{4}$	U_{S}	U_{p}	$\mathrm{U}_{\mathrm{r}}^{-}$	$\mathrm{U}_{\mathrm{r}}^{+}$
1	298.0	298.0	298.0	298.0	347.5	0.0	-347.5	-347.5
2	298.0	322.0	274.2	298.0	392.3	70.74	-262.5	-262.5
3	298.0	328.0	269.2	298.0	402.6	85.98	-244.2	-347.5
4	298.0	358.0	245.0	298.0	457.5	161.6	-153.5	-347.5
5	298.0	366.7	238.8	298.0	473.3	182.0	-128.9	-347.5
6	298.0	374.4	233.5	298.0	487.1	199.5	-107.9	-347.5
7	298.0	393.0	221.0	298.0	520.9	241.2	-57.9	-347.5
8	298.0	415.3	208.2	298.0	558.4	285.2	-5.05	-347.5
9	298.0	423.5	203.6	298.0	572.1	301.17	14.06	-347.5
10	298.0	479.3	177.1	298.0	660.2	397.8	130.0	-347.5
11	298.0	528.7	158.1	298.0	730.9	471.5	218.5	-347.5
12	298.0	630.6	127.5	298.0	860.7	600.8	373.4	-347.5

I. CHEM. E. SYMPOSIUM SERIES NO. 71

TABLE 1 (Continued)
RESULTS FROM COMPUTER CALCULATIONS
Thrust Newtons

Case No	F_{A}	F_{B}	F_{C}	F_{D}	Area ratio for maximum thrust $A R_{D}$
1	0.0	0.0	0.0	0.0	1.0
2	7210	7236	11660	11660	1.0
3	9363	9416	14460	14460	1.0
4	24740	25237	34510	35270	1.177
5	30670	31447	49390	49390	1.262
6	36550	37663	50260	52170	1.346
7	54130	56490	74150	77770	1.591
8	80060	84730	109900	119400	1.931
9	91850	97720	126400	138400	2.077
10	207600	225900	289030	333200	3.326
11	389600	423000	539000	663600	4.884
12	1270000	1276000	1620000	2038000	9.984

Notes 1) Velocities are tve in direction from high pressure reactor to low pressure container
2) $a_{1}=a_{4}=347.5 \mathrm{~ms}^{-1}$ for all cases
3) $M W_{1}=M W_{4}=28.2$ (air)
4) $r_{1}=\gamma_{4}=1.4$
5) $A_{t}=0.0929 \mathrm{~m}^{2}(\equiv 1 \mathrm{sq}$ foot)

NOMENCLATURE (SI UNITS)

A_{t} Area of connecting duct
A_{e} Exit area
AR Area ratio A_{e} / A_{p} (ie area ratio from belling)
a Sonic velocity
F_{A} Thrust on supports given by acceleration of centre of gravity equations 16 and 18
F_{B} Thrust on supports given by equation 21
F_{C} Maximum thrust resulting from fully breached connecting duct without belling
F_{D} Maximum thrust resulting from fully breached connecting duct with belling
g gravitational constant
L Linear dimension
m Mass of gas within undisturbed boundaries in the connecting duct

M Total mass of enclosed gas
P Pressure
T Absolute temperature
t time
U Velocity of various fronts in the connecting duct
U_{s} Velocity of shock front
Up Velocity of contact surface between gases initially on either side of the diaphragm
$\mathrm{U}_{\mathrm{r}}^{-} \quad$ Velocity of low pressure end of the expansion front
$\mathrm{U}_{\mathrm{r}}^{+}$Velocity of high pressure end of the expansion front
v Volume
x Linear dimension
Ratio of specific heats
p density

I. CHEM. E. SYMPOSIUM SERIES NO. 71

SUFFICES

a Atmospheric or environmental condition
g Measured to centre of gravity
t Throat condition
e Exit condition of jet
1 Condition in low pressure container vessel 1
2 Condition between shock wave and contact surface
3 Condition between expansion front and contact surface
4 Condition in reactor vessel

REFERENCES

1. Liepmann,H.W., and Roshko,A.,Elements of Gas Dynamics,John Wiley and Sons Inc,NY,1957,Chapter 3.
2. Shapiro,A.H.,The Dynamics and Thermodynamics of Compressible Fluid Flow, The Ronald Press Ltd, NY, 1954 Volume II, Section 25.4 .
3. Shapiro,A.H.,The Dynamics and Thermodynamics of Compressible Fluid Flow, The Ronald Press Ltd, NY, 1954 Volume I, Section4.11
4. Woods, W.A., Calculation of Transient Forces during Emergency Escape of Gases from an Autoclave with Special Emergency Escape of Gases from an Autoclave with Spec Chemical Process Hazards, Inst Chem Eng.
5. Speechly, D., Thornton, R.E.,Woods,W.A., Principles of Total Containment System Design, North Western Branch Papers 1979, No2, Inst Chem Eng, Symposium on the Safe venting of Chemical Reactors
6. Kay,J.M.,Fluid Mechanics and Heat Transfer, p. 225 CUP, 1957.
I. CHEM. E. SYMPOSIUM SERIES NO. 71

notes U_{r}^{-}can be positive or negative in sign Ur $_{r^{+}}$IS ALWAYS NEGATIVE U_{r}^{+}IS ALWAYS NEGATIVE
U_{s} IS ALWAYS POSITIVE
U_{S} IS ALWAYS PSSITIVE
U_{p} IS ALWAYS POSI
(POSITIVE INDICATES MOVEMENT FROM RIGHT TO LEFT)
FIG.1. INITIAL TRANSIENT ANALYSIS

FIG. 2. THRUST ANALYSIS

