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STEP ERROR REDUCTION RECOMMENDATIONS
PROCEDURES TRAINING EQUIPMENT

2.1
Verify tanker 
is empty

Double check via 
unladen weight 
check. Use checklist

Stress importance 
of verifying 
tanker is empty

Provide gauge indicating 
tanker pressure

2.3
Enter tanker 
target weight

Independent 
validation of 
target weight.
Recording of 
values in checklist

Ensure operator 
double checks 
entered date

Automatic setting of weight 
alarms from unladen weight. 
Computerise logging system and 
build in checks on tanker reg. 
no. and unladen weight linked 
to warning system.
Display differences between 
unladen and current weights

3.2.2
Check Road
Tanker
while
filling

Provide secondary 
task involving 
other personnel. 
Supervisor 
periodically 
checks operation

Stress importance 
of regular checks 
for safety

Provide automatic log-in 
procedure

3.2.3
Attend tanker 
during filling 
of last 2-3 tonnes 
(on weight alarm)

Ensure work 
schedule allows 
operator to do this 
without pressure

Illustrate consequences 
of not attending

Repeat alarm in secondary area. 
Automatic interlock to terminate 
loading if alarm not 
acknowledged. Visual indication 
of alarm.

3.2.5
Cancel final 
weight alarm

Note differences 
between the sound 
of the two alarms 
in checklist

Alert operators 
during training 
about differences 
in sounds of alarms

Use completely different 
tones for initial and final 
weight alarms

jli£<n*e 9: Error Reduction Hwoinmeiwliitinin;
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ADVANCES IN GAS CLOUD DISPERSION MODELLING: 
HEAVY CLOUDS ON SLOPING GROUND

D.M.Webber, S.J.Jones, and D.Martin
SRD, AEA Technology, Wigshaw Lane, Culcheth, Warrington WA3 4NE

A model is presented of the motion of a heavy gas cloud down a 
uniform slope in calm ambient conditions. The model is derived 
from solutions of the shallow water equations with appropriate 
boundary conditions. Its predictions are shown to agree adequately 
with experimental results in calm conditions, and a possible 
generalisation to allow for the presence of a wind is discussed.

Keywords: Gas Cloud, Sloping Ground.

1 INTRODUCTION

Integral (or box) models of gas dispersion are now a standard tool for the analysis of flammable 
and toxic hazards, posed by major industrial plant. Recent developments, including work under 
the recently completed Major Technological Hazards programme of the Commission of the 
European Communities, have been aimed at extending the understanding of heavy gas flows to 
situations where the nature of the terrain, or of structures on it, may have a significant effect on 
the dispersion. The results of the CEC project have been sumarised by Builtjes (1992) who gives 
full reference to the more complete reports of the individual participants. This work includes: 
field trials on propane clouds, with and without momentum at the source, encountering fence and 
channel obstacles; wind-tunnel experiments involving many repeated releases, clouds 
encountering fences, and clouds on sloping ground; analysis of earlier data on the interction of 
clouds with obstacles, and analysis of concentration fluctuations in earlier experiments; and 
mathematical modelling of some of these processes.

Here we shall focus on some aspects of gas clouds released on sloping ground. The work 
presented was begun under the above project. Hazardous clouds are very often significantly 
heavier than air and such sloping terrain is known to have a important effect. Models of the 
behaviour of a heavy cloud released instantaneously on a slope have recently been presented by 
Deaves and Hall (1990) and by Nikmo and Kukkonen (1991).

Each of these models is an intuitively appealing generalisation of the flat ground integral 
model approach to include the effects of slopes. However, in each case the effect of the slope is 
only found with a numerically computed solution to a set of differential equations. Whilst this 
situation is quite usual, it is highly desirable to have a more direct understanding of the nature and 
effects of the assumptions involved in such models.

The importance of such an understanding cannot be overstated. Credible hazard analysis 
can only come about using models which are well validated on (of necessity) small scale data, and 
which incorporate sound physical assumptions (and accurate calculational methods) in
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extrapolating their predictions to larger scales. In situations where data are relatively sparse, and 
the possible validation therefore relatively incomplete, the importance of the sound physical 
assumptions is highlighted still further.

Our objective here, then, is to examine the very simple case of a heavy cloud released 
instantaneously on to a uniform slope and dispersing isothermally in a way which is known to 
conserve buoyancy. We shall focus here on the effect of the slope on the overall motion of the 
cloud, rather than on any effect it may have on dilution rates. In order to do this, we shall start 
by discarding all other complicating factors. We therefore restrict ourselves a priori to the case 
of zero wind, and idealise to the extent that no mixing is assumed. This, as we shall show, allows 
considerable progress in understanding the effect of the cloud falling down the slope.

In particular an equation is derived relating the cloud's terminal velocity down the slope 
(where gravity balances resistance forces) to its density and volume, and to the gradient of the 
slope. Comparison with data will show that this assumption yields very plausible results.

2 TWO-DIMENSIONAL RELEASES ON SLOPES

2.1 Introduction

Our main purpose is to present results for the case of a three-dimensional cloud released 
instantaneously. It is instructive, however, first to consider the simpler two-dimensional case, 
discussed by Jones, Martin, Webber, and Wren (1991).

The essential assumption of our approach is that it is reasonable to consider the motion of 
a cloud on a slope, independently of its mixing with the ambient air. Thus we are attempting to 
assess how a (fictitious) cloud of fixed density might behave on a slope. Of course, any complete 
model of gas cloud behaviour must model mixing accurately, and we shall return to a discussion 
of this below.

The behaviour of a cloud of fixed density is readily accessible via the shallow water 
equations, which contain the added assumptions that the cloud is of large horizontal extent 
compared with its depth, and that the slope is not too steep. That is to say, if we designate the 
fluid depth as H, the horizontal extent A, and the gradient of the slope T: we 
r e q u i re
H«A and T«l. Later we shall discuss the regimes H=0(TA) and H»0(TA). Let 
us note here that these are not incompatible with the formal restrictions 
imposed by shallow water theory. For our purposes here, when we refer to a 
"tall" cloud we mean H»0(TA) rather than one which violates the shallow (H«A) 
assumption.

2.2 The Two-Dimensional Shallow-Water Model

The shallow water equations in one horizontal dimension (implying a two-dimensional flow when 
the vertical, depth-averaged dimension is counted) are:
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dQi-a) . d{u(h-a)) _ Q 
dt dx

(2.1)

—— + u—— + g"™ = 0 
dt dx dx

(2.2)

Here t is time, and x is the horizontal space coordinate. The fields are the horizontal velocity u 
and the height h of the top of the cloud above a fixed datum (see Figure 1). The quantity a, is 
the height of the ground level above the datum, so that h-a is the fluid depth. We are considering 
a cloud of density p spreading in an ambient atmosphere of density p, and g" is the reduced 
acceleration due to gravity

g"=g- (2.3)

In the case studied here, as mixing is not yet incorporated into the model, g" is constant.
The fact that there will be significant resistance exerted by the ambient air to the cloud 

spread is embodied in the boundary conditions. This resistance to motion can be incorporated 
(Wheatley and Webber 1984, Fannelop and Jacobsen 1984, Grundy and Rottman 1985, Webber 
and Brighton 1986) in the boundary condition

uf = kf\Jg '(h - a)f (2A>

where g' is defined, (slightly differently from g") by

(2.5)

and (h-a)„ u, are the fluid depth and (normal component of) velocity at the edge of the cloud, and 
kt is a constant (0(1)) Froude number. (Note that k, is not identical to the similar quantity used 
in integral models, which is based on the mean depth rather than the frontal depth, for self similar 
flow the two Froude constants have a constant ratio.) This boundary condition expresses a 
resistance pressure of the ambient air and we shall adopt it wherever the cloud edge is moving into 
the ambient fluid.

Where the cloud edge is receding from the ambient fluid we shall adopt the boundary 
condition
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(2.6)

allowing movement of the trailing edge without resistance.
Here we shall consider only a uniform slope, downwards in the direction of increasing x, 

given by

a(x) = -Fx (2.7)

where the slope F is constant and positive.

2.3 Analytic Solution of the Shallow Water Equations

As we have seen (Jones, Martin, Webber, and Wren 1991), there is a very simple analytic solution 
of the above problem, representing a wedge of gas moving downhill at its terminal velocity 
(corresponding to a balance of gravity and resistance forces). The derivation of this is briefly as 
follows.

Assume there is a "terminal velocity” solution in which the fluid velocity is independent 
of both time and space. If this is the case, then the first of the two shallow water equations 
becomes

(— + u—\h-a) = 0{dt  ax)

and the solution must have the form

(h - a) = H(x - ut)

(2.8)

(2.9)

for some function H. At the rear boundary, x=Xb(t), which follows the cloud, the fluid height is 
zero, so that

H(Xb - ut) = 0 (2.10)

and the origin of the coordinate system can now be chosen so that X,, = ut. The boundary 
condition at the front is

(h - a)f
g'k

(2.11)

and this can now be rewritten as
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(2.12)

where X, is the position of the front of the fluid region. The right hand side of this equation is 
constant, as the velocity is constant (by assumption), and therefore the left hand side of this 
equation has to be constant. If the extent of the gas cloud is L = X, - Xb then:

H(L) =
g'k}

(2.13)

and L must therefore be constant. Note also from (2.11) that a solution with constant u implies 
constant frontal depth.

The second equation of the two shallow water equations can be written as

du + u du _ -g "(d(h-a) _ j-A (2.14)
~dt Hx \ Sx )

With the velocity u assumed independent of space and time, this equation reduces to

d(h-a) = r (2.15)
dx

where I = -da/dx is the gradient of the slope as defined above. With h-a of the above form 
H(x-ut), then clearly we must have

H(x -ut) =r.[x -ut] (216)

up to a possible additive constant, (which is simply equivalent to a choice of origin). The front 
depth (h-a), is now just TL, and so the front condition gives the terminal velocity

u = kf[Tg'Lfn {l‘UI

It is convenient to define the two-dimensional volume V of the cloud (the volume per unit width 
or side area). For the above solution this is just
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L2r
2

(2.18)

In terms of this, the cloud moves at a speed

u = 2'l*kfT'IA\gaV\'l* (2.19)

The last factor can be anticipated from dimensional analysis, but this result does show that the 
heavy gas cloud (of a given volume and density) moves down the slope with a terminal velocity 
proportional to the fourth root of the gradient of the slope.

2.4 Numerical Solution of the Shallow Water Equations

It is worth emphasising that the above analytic solution was originally found after a numerical 
solution had revealed this very simple asymptotic behaviour at large time. This demonstrates that 
the solution is indeed a stable one, and is therefore valid within the assumptions.

The evolution found for a wedge released from rest is shown in Figures 2a-2d. These 
figures illustrate the initial acceleration of the head; the subsequent formation of a hydraulic jump 
separating distinct head and tail regions; the evolution of the tail region as it then catches up with 
the head; and finally the collapse of the hydraulic jump leaving a wedge of material moving down 
the hill en masse with a level top surface and constant uniform velocity.

2.5 Comment

The solution of the shallow water equations discussed above is peculiar in that the cloud doesn't 
spread. This is a consequence of the boundary conditions, combined with the existence of a slope. 
The motion of the down slope edge, is just as one would expect for a cloud on flat ground; the 
collapse of the upslope edge, and the subsequent H=0 boundary condition, does not constrain its 
velocity, allowing it simply to follow the fluid motion. In this way the slumping is turned into 
a bulk downhill motion. It is thus clear how the assumptions built into the model can yield this 
result, which we feel is eminently plausible.

3 THREE-DIMENSIONAL RELEASES ON SLOPES

3.1 The Shallow Water model

The two-dimensional model of Section 2 is interesting but very restrictive. More interesting is 
the corresponding evolution of a three-dimensional cloud released on the slope. Our numerical
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scheme for solving shallow water equations cannot yet cope with three dimensions (two horizontal 
dimensions) but, as we shall now show, there does exist an almost equally simple analytic solution 
in this case.

Consider first the cross-slope dimension. At first one might imagine that the cloud's 
behaviour as regards this dimension is unaffected by the slope. However, a cloud which does not 
spread longitudinally on the slope, but which continues to spread laterally, seems a little 
outlandish. It would therefore seem pertinent to assume that a solution exists which spreads 
neither longitudinally nor laterally, but moves down the slope with no change in shape. This is 
the key to the derivation of the appropriate solution.

3.1.1 Shallow water equations Following the method adopted for the two dimensional case, we 
take the shallow water theory in the horizontal plane with coordinates x in the form

♦ S.(H(h-a)) = 0 
dt

(3.1)

— + (a-Xte + g"'Sh = 0
Ot

(3.2)

with g" as before, and a uniform slope

a(x) = Tx.h (3.3)

where, in keeping with our earlier two-dimensional formalism, we take

n =(-1,0) (3.4)

in the (x,y) plane. We shall now show that there is a solution for a cloud of constant uniform 
velocity, flat top, and fixed shape, exactly as in the two-dimensional case. Figure 3 illustrates this 
situation.

3.1.2 Solution of the equations In fact it is clear that there is a solution of the equations with

with constant u, and
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(h - a) = H(n.(ut-x)) (3.6)

with

YH = -ra (3.7)

implying

h  = rs.fet - a)

3.1.3 The boundary condition at the rear The rear of the cloud again has zero depth and, at any 
given time t, is a straight line across the slope given by

5 = Kb(t,y) (3.9)

for y in [-Y,+Y], where

Z f i - y )  = + (o.y) (3.10)

and Y is the overall half-width of the cloud at the trailing edge.

3.1.4 The boundary condition at the front Having thus satisfied the trailing boundary condition, 
it remains to satisfy the front condition. Let us take the length of the cloud in the direction of the 
slope to be L(y), as illustrated in the plan view of Figure 4. This is such that L(-y)=L(y); 
L(Y)=0; and we define L(0)=A. The front condition

_______ (3.11)
“/ " k fJg'(h-a) f

is now defined for a front velocity component u( orthogonal to the edge of the cloud. Therefore

“/O') =

'dV

?y,

(3.12)
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at a transverse distance y from the centre line. At this point (h-a)[=TL(y), and so, after a little 
manipulation, the boundary condition gives the equation

dL u2

\ kfg'TL
(3.13)

from which we deduce

and

where

A = (3.14)
*/V

dL
dy

(3.15)

L-L
A A

(3.16)

The solution of this equation may be written parametrically as

L = cos2co

y - (0 + cosoosinco

(3.17)

This shape is illustrated to scale in Figure 5; this completes 
generalisation of the simple free-fall cloud presented for two-dimensions

the three-dimensional 
in Section 2.

3-1.5 Properties of the solution As we have already noted, the velocity u is related to the overall 
length A of the cloud by

u = kjJg'TA
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As before, it is appropriate to relate this to the volume V of the cloud. This is given by

where

+—A2 Uy)
V = J  dy j  dx.[Tx] = TA3S26

(3.19)

+ Jl 
2

I dm cos 6oj

2

5ji

16
(3.20)

Our final result for a cloud of given volume and density is that the free-fall velocity on a slope 
Tis

u = Q6-',6.k/rm^glV1'3 (3.21)

This is slightly different from the two-dimensional result. The final factor is again as 
expected from dimensional analysis, but the slope dependence is now a cube root in place of the 
fourth root which pertained earlier. It is also interesting to note the prediction that the cloud is 
k times as wide across the slope as it is long.

Examining the solution, we can again see how a non-spreading cloud can come about. 
In the longitudinal direction it is exactly as in the 2-dimensional case. The edge velocity is at 
all points normal to the cloud boundary, but is exactly accounted for by the overall motion of the 
cloud. At the outside rear edge where the normal points across the slope, the depth and the 
spreading velocity reach zero together, allowing a non-spreading solution.

3.2 Air entrainment

Modelling air entrainment in the context of the shallow water model is a fairly complicated 
exercise. A very practical course, however, which is in keeping with the philosophy of simple 
integral models, is to assume an air entrainment model into a cloud which continues to move on 
the slope in the above self-similar way. (We shall discuss the possibility of introducing an 
ambient wind later.) This is not inconsistent with the sort of behaviour discussed by Britter, 
Cleaver, and Cooper (1991).

In this case the entrainment is assumed just such that the relationship between down-slope 
velocity u, volume V, and density (implicit in g') is preserved. This allows a very natural 
generalisation of integral models on flat ground to the case of a uniform slope.
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However, if we set out in that direction, any test which we were to apply to the model 
would depend both on the entrainment model and on the down-slope free-fall model considered 
here. It would be far preferable if we could test the ideas presented here, independently of the 
precise details of any entrainment model. In fact we can do this to some extent as is shown in 
the next section.

4 COMPARISON WITH DATA

4.1 The experiments of Schatzmann et al (1990)

4.1.1 Introduction As part of their contribution to the CEC Major Technological Hazards project 
Schatzmann, Marotzke, and Donat (1990) used a boundary layer wind tunnel to model an 
instantaneous release of a dense gas on an inclined plane in conditions of zero ambient flow. This 
corresponds as closely as possible to the idealisation in our model, and so it is interesting to 
compare the predictions model with these results. (Steady-continuous releases were also 
performed, but consideration of these is outside the scope of the model presented here.)

4.1.2 Experimental Set-up In these experiments instantaneous releases were achieved by filling 
a 450 cm3 cylinder with a mixture of sulphur hexafluoride (SF6) and air to the required density 
and then abruptly retracting the side walls into the wind tunnel floor. Ground level SF6 
concentrations were then measured at eight points down the slope (three on the centre line, five 
off axis) using artificially aspirated hot-wire anemometers with a sampling rate or either 10 or 
12.5 Hz. The concentration time history from each of the sensors is available without additional 
filtering or averaging.

Each release was repeated five times using identical initial conditions with zero ambient 
wind. Three different inclines, ranging from T=4% to 11.63% (see Figure 1), were also used. 
Note that the largest of these, T=0.1163, is still a shallow slope in the terms discussed earlier.

4,2 Comparison of the model with the data

4,2.1 Model considerations It is desirable to compare the predictions of the model, independently 
of any particular entrainment model. As it stands in Section 3 the model relates cloud velocity 
with slope, density and volume without recourse to any free parameters (apart from k, which is 
already effectively determined from the cloud spreading law on flat ground). It is therefore our 
objective to extract these quantities from the data in order to test the predicted relation.

u = Q6-',6.kfrir>Jg'V'rs

obtained above.

4.2.2 Data Reduction In order to do this, we need to know the cloud volume and the relative 
density excess as a function of time and space. In order to avoid complications which might arise 
from cross-slope density variations, we have chosen in this study to use only the ata rom t e
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three sensors which there placed on the centre line.

For all fifteen instantaneous releases onto inclined planes pure SF6 was used as the working fluid. 
Assuming only that this is an isothermal flow of an approximately ideal gas, we know that the 
flow is buoyancy conserving. That is to say that the cloud-averaged mean density excess

A' = (P - P.)

P„
(4.2)

is directly proportional to the concentration (contaminant mass per unit volume), and is therefore 
related to the volume V by

A'0V0 = A'V (4.3)

where subscript 0 indicates the initial values.
For the moment let us make the bold assumption that we can use the measured 

concentrations as representative of the mean values, and return to argue about this later. In this 
case the concentration measurements give immediate estimates of density and volume via these 
relationships. From these we calculate our model prediction for the cloud velocity u, and test to 
see whether it agrees with the observed rate of travel.

Schatzmann et al present volumetric concentration C as fraction of the initial concentration 
(C0) in the cylinder before the release took place. From this we estimate the volume as

X - fxf (4.4)
r0 {c0 j

and find the required combination of variables

g'Vm ^g'oW*3 (4’5)

wherein g'0V0 can be calculated from the initial conditions. The resultant estimates of the velocity 
u are given in the tables below, taking the concentration (C) from the mean of the maximum 
concentrations measured by each sensor during the five repeats, and taking lq=1.07, a mean 
spreading Froude number which has been seen (Brighton, Prince and Webber 1985) to optimise 
fits to Thomey Island (ie flat-gound) data.

Sensor Position C/Q, u (ms'1)

(61.3,0,0) 5.826 10'2 0.080

(122.61,0,0) 1.624 lO’2 0.052

(183.91,0,0) 0.962 10'2 0.044

Table 1: 4.0% Slope

362

I CHEM E SYMPOSIUM SERIES No. 130

Sensor Position C/Co u (ms'1)

(61.3,0,0) 8.282 10'2 0.361

(122.61,0,0) 3.188 10'2 0.263

(183.91,0,0) 1.616 10'2 0.209

Table 2: 8.6% Slope

Sensor Position c/c0 u (ms'1)

(61.3,0,0) 8.242 10"2 0.399

(122.61,0,0) 3.540 10'2 0.301

(183.91,0,0) 1.464 10'2 0.224

Table 3: 11.63% Slope

We cannot measure the cloud advection velocity directly from the experimental data. We 
can however, obtain the cloud arrival time at the three sensor locations. By plotting arrival time 
against distance from the source we do get at least some indication of the cloud velocity, even 
though there are only three data points for each run. In Figures 6a-6c we have plotted arrival 
times and drawn a smooth curve through the data to guide the eye. Our predicted velocity is 
shown as a short line with the appropriate gradient (u) at each data point. If our model were 
exactly correct, and the extraction of the cloud volume and density accurate, then these lines 
would be tangents to the curve. Given the uncertainties in the data extraction procedure, we 
regard the results as sufficiently good to support the shallow water model approach.

It is worth noting that the wedge-shaped flow of our model will take some time to set 
itself up, and we should therefore expect the model to be better in the far field. The near field 
data must reflect the initial slumping which is not considered in the model we have presented. 
It is also interesting that the model seems best when applied to the shallowest slope.

5 DISCUSSION AND CONCLUSIONS

5.1 Significance of the results

Our interpretation of the data is of necessity very crude. The assumption that the measurements 
reflect the average concentration (or more particularly the concentration which corresponds to the 
best choice of density in the shallow-water model) looks at first sight to be somewhat cavalier, 
and to take rather too literally the old box model idea that concentration and density variations are 
well represented by profiles which are uniform within the cloud and zero outside it.

However, let us now suppose that the profiles are merely self-similar to some reasonable 
approximation. This is still an assumption of course, but a much weaker one. Self-similarity 
means that the cloud-average concentration and density are simply constant multiples of the 
ground-level centre-line value. In particular the combination A'V, (where A' is now based on the
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ground-level centre-line density) would still be constant in the self-similar regime. There is still 
some uncertainty in evaluating this from the initial (non-self-similar state) but this is reduced by 
the square root in evaluating the velocity.

All in all then, we regard the comparison shown in Figures 6a-6c as successful to the 
degree of accuracy which we can expect of the model. In particular the predicted T1/3 dependence 
is not unrealistic. It is, however, difficult to test the precise form of this slow dependence on a 
limited data set. Further data on even shallower slopes might be more revealing in this respect.

It is also worth noting that slopes of practical interest may only be up to 1 in 10 or so 
(r=0.1) which are therefore treatable within this framework.

A general insensitivity to the slope is noted by Britter Cleaver and Cooper (1991). They 
however quote a dependence of the cloud velocity on the slope of sin0/0 compared to our result 
of (tan0)1/3. Our methods are inappropriate to large slopes, but clearly their expression cannot be 
valid close to 0=0, and so a direct comparison is difficult. It is made more difficult by the fact 
that our result is for a cloud of fixed volume and density, whereas Britter et al discuss the velocity 
of entraining clouds. There is scope for further work here.

5.2 Further comments

There are two possible ways of seeking further confirmation of the model, which we can 
contemplate here.

5.2.1 Development of integral models One way is to combine the ideas above with a simple 
computerised model. Entrainment can be introduced in the usual way, although there is clearly 
some freedom about how exactly to do this. The simplest way of allowing for advection with 
the wind is to add the slope-generated velocity discussed here to the wind-advection velocity 
(vectorially). The predictions of such a model could be compared with a wider data-set. Let us 
emphasise, however, that this approach would be validating a whole combination of different 
aspects of the model, including entrainment as well as bulk motion, and therefore, whilst having 
its own benefits, loses some of the advantages of the simple test presented here. A combination 
of the two approaches is therefore desirable. We are currently pursuing this avenue.

5.2.2 Further qualitative predictions of the model The model presented here has two qualitative 
aspects which distinguish it from the results of other approaches. In principle these can be tested 
if appropriate data are obtained.

Firstly, the approach presented here gives rise to a picture of slumping followed by 
translation for a cloud released from a highish aspect ratio in calm conditions. (By "highish" we 
mean the regime discussed earlier where the cloud is tall relative to the drop in the slope, but still 
shallow.) This separation of slumping and translation contrasts with the slumping accompanied 
by downhill motion found in the models of Deaves and Hall (1990) and Nikmo and Kukkonen 
(1991). In our approach this is a consequence of the boundary conditions: while the uphill edge 
depth and the downhill edge depth are the same, the uphill boundary will spread in the same way 
as the downhill one. The material will rearrange itself within the boundaries so that the centre 
of mass moves downhill, but only when the depth of the cloud is comparable with the drop in the 
slope over its length will the overall downhill translation become apparent. Ultimately the gravity 
spreading is predicted to stop, and any cloud growth will be due purely to the relatively slow 
process of entrainment. This is illustrated in a two-dimensional numerical solution of the shallow
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water model shown in Figures 7a-7f. In this illustration the cloud is started off as close as 
possible to the parabolic-topped, flat-ground similarity solution variously described by Fannelop 
and Jacobsen (1984), Wheatley and Webber (1984), Grundy and Rottman (1985) and Webber and 
Brighton (1986). This shows the onset of a significant deviation from the self-similar behaviour 
introduced by the slope, and the transition to the "wedge" behaviour described here.

Secondly, the cloud width predicted by the model (in two horizontal dimensions) is jt times 
its overall length. Whilst exact confirmation of this is unlikely given the oversimplicity of some 
of our assumptions, any experimental visualisation of this flow which showed a cloud to be wide 
compared to its length would be an interesting support for this approach - we know a priori of 
no other reason why such a result should appear.
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Figure 1 A gas cloud on a slope; definition of geometric variables.
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Figure 2a,b: Motion, in 2 dimensions, of a "wedge" released from rest, showing the development 
of "head" and "tail" regions separated by a hydraulic jump.
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Figure 2c,d: Continued motion, in 2 dimensions, of a "wedge" released from rest, showing the 
collapse of the hydraulic jump and the formation of a wedge moving uniformly.
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Figure 3: A 3-dimensional cloud moving uniformly, at constant velocity with no change in 
shape. The shallow water equations with appropriate boundary conditions admit a solution of this 
form.

Htyl = r. llyl

K i l l

L  I  y  )

J 91 HUy
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Figure 4: Determination of the shape of the cloud from the boundary conditions.
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Figure 5: The scaled plan view of the cloud. The full width (Y) is Jt times the length (X).

210

180 -

150 ■

120 •

4.0% slope

5.2 cm/s

4.4 cm/s.

90

60

8 cm/s

30

2 4 6 8 10 12 14 16 18
Arrival time(s)

Figure 6a: Centre-line distance travelled versus time for the front of a cloud released at rest on 
a uniform slope of 0.04. Data are marked (+) and interpolated with a dotted line to guide the eye. 
The short solid lines indicate the predicted velocity, which if exactly correct, should be tangent 
to the curve.
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Figures 6b,c: As for figure 6a but with uniform slopes of 0.086 and 0.1163.
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Figures 7a,b: A cloud released from rest on a slope - in 2 dimensions. The cloud is released 
spreading in a way which would continue indefinitely in a self-similar way if the ground were 
flat. Differences from the symmetric self-similar flow begin to appear as the cloud aspect ratio 
becomes close to the gradient of the slope, but in this regime the cloud is largely unaffected by 
the slope.
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Figure 7c,d: Continuing the flow from figures 7a,b: a hydraulic jump appears separating a "head" 
and a "tail" region. The slope is having a noticeable effect here, but this is a transition to the
final reeime.
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Figures 7e,f: Continuing the flow from Figures 7a-d: in the final regime the hydraulic jump 
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spreading.

COMPUTER SIMULATIONS OF WIND AND VENTILATION 
AID PLATFORM DESIGN AND SAFETY

A. Ronold
DNV Technica, P.O. Box 300, 1322 Hovik, Norway

Computer simulations of wind and ventilation provide a cost efficient tool in the fields 
of area classification, smoke and gas dispersion and wind-related platform design 
aspects such as positioning of turbine exhaust and air intakes.

Adequate natural ventilation in petroleum process plants is of crucial importance 
when classification of hazardous areas is considered. The term "adequate" is most often 
referring to either the number of air changes in a given area or to the frequency of 
occurrence of wind speeds less than a given value, typically 0.5 m/s or 2 m/s. In an 
attempt to specify these parameters accurately, and to aid in the assessment of area 
classification as well as platform design, computational fluid dynamics (CFD) can be 
used to simulate the wind flow field and gas or smoke dispersion around and within 
process plants.

For a given installation, wind simulations are typically carried out for three different 
wind speeds and eight wind directions. Combined with information from the wind rose 
for the actual site, these simulations yield the frequency of occurrence of number of air 
changes on all areas of the installation considered, as well as air velocity distributions. 
Examples are presented from offshore installations in the North Sea.

Given the wind flow field and air velocity distributions for a certain installation, gas 
or smoke dispersion simulations can be performed, for example to consider the 
likelihood of having ignitable gas-air concentrations into non-hazardous areas of the 
plant in the case of a major gas release. Examples on calculated gas concentration 
profiles for certain release scenarios are presented.

Keywords: Ventilation, Area Classification, Gas Dispersion, Wind

INTRODUCTION

Wind and ventilation play an important role in many aspects of offshore technology and a 
thorough understanding of the air flow behaviour is essential in decision making in platform 
design. This knowledge can be obtained through experiments, but prototype measurements are 
often impossible for cost and safety reasons, and model experiments such as wind tunnel tests are 
also expensive and time consuming - and may suffer from scaling problems. Alternatively, 
numerical simulations may be used to determine the ventilation characteristics of a plant, and at 
DNV the in-house computer programme COFAN has become increasingly important within the 
areas of process technology and consequence analyses, and has proven to be an efficient tool for 
solving problems comprising complex flow phenomena.

COFAN - complex flow analysis - simulates fluid flow, heat and mass transfer in two- and 
three-dimensional geometries by solving the ’finite volume’ versions of the differential equations 
governing the flow (Navier-Stokes) and using the k-e model of turbulence, as described by Rastogi 
(1). The ’finite volumes’ in question are arrays of contiguos ’cells’, each of which possesses a 
typical value of the pressure, temperature, velocity components, etc. of the fluid. One of the 
advantages of COFAN is the adaptability to complex geometries. COFAN utilises a technique 
developed by Karki (2) that makes it possible to generate a body-fitted curvilinear grid, in which
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