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Many powdered materials slowly oxidise with time which generates heat. If in a bulk form (such as during 

transport or storage) then heat generation can exceed heat loss, leading to ignition. Climate control and limiting 

packing amounts can reduce the risk but this increases the costs for the consumer through reduced logistical 

options, larger shipping volumes and disposal of additional packaging. 

Laboratory tests are well established to determine a safe packing size. However, they are costly, especially for 

new products where limited amounts of material are available. The physics of the oxidation process can be 

simulated provided all the material properties are known. 

Can these two approaches be combined? Given the measured material properties and results of laboratory 
thermal stability tests how certain are the unknown material properties, such as Activation Energy, which are 

key to predicting the stability at real world scales? 

This paper will demonstrate a method to use the results of simulation studies to guide the order and type of 
thermal stability tests to carry out. It represents an alternative approach to using empirical correlations and 

extrapolations (such as a Leuschke plot) and is particularly relevant where test material is limited. It should be 

of interest to those who need to make decisions about safe handling, transport and storage of materials that 

undergo oxidative decomposition. 

Introduction 

A porous solid can undergo slow oxidative decomposition generating heat. If the rate at which this heat is transferred 

through the bulk to the surroundings is too low, the internal temperature can rise rapidly, causing the reaction rate to increase 

further, leading to thermal runaway. For a given material and geometry there exists a critical temperature [Tcrit] above which 

thermal runaway occurs. 

Previous work presented at this conference encouraged practitioners to include uncertainty when making extrapolations from 

basket line results (Puttick, 2011). In this work we want to highlight an alternative mindset to approaching this problem. 

Rather than trying to get enough data to extrapolate, the focus is on getting sufficiently good estimates of the relevant 

material properties. These estimates can then be used in the appropriate equations [i.e. Frank-Kamenetskii] to predict the 

stability at real world scales. 

A motivating factor behind this approach is the limited quantities of material available when assessing the safety of new 

chemicals. A basket line requires a minimum of 5 litres of powder and can easily use over 20 litres. Prior to the pilot plant 

production, only 10’s to 100’s of kilos of material may exist globally which is also required for toxicology, registration, 

formulation and field trial studies. There is an additional desire to having a good understanding of the safe operating 

conditions before introducing the material to pilot scale manufacture.  

Using this alternative approach, the required material properties can be determined using less than 2 litres of material whilst 

also giving the uncertainty in the critical temperature at real world scales. 

Thermal Explosion Theory 

By the time a material is considered for basket line testing, it has already been pre-screened to check it is not an explosive 

and demonstrated it undergoes self-heating under laboratory conditions. A full basket line is not required for shipping, 

instead relying on the UN Recommendations on the Transport of Dangerous Goods, Division 4.2 (Nations, 2003). A series 

of up to 4 basket tests are carried out according to a flow chart to determine the packing group. This may classify some 

materials into restricted pack sizes, whereas the prediction based on basket line testing may demonstrate this restriction is not 

required. Additionally, the Division 4.2 information may not be enough for the design of bulk storage facilities. 

The Frank-Kamenetskii method is the most widely used method for determining the critical temperature. The application is 

described in BS EN 15188:2007, a European standard which is used commonly in industry (2007). It has been refined based 

on inter-laboratory testing to ensure it is applicable beyond the area of carbonaceous materials in determining safe 

processing, packing and transportation conditions (Kunath et al., 2013, Frost et al., 2016). 

Thermal explosion theory is covered in standard textbooks (Bowes, 1984) and so the derivation will not be covered here. 

However, Equations 1 to 3 need to be introduced for the subsequent discussion. By varying the oven temperature [To] for 

different fixed basket sizes [r], the values of P and M can be determined experimentally. This is helpful as the material 

properties in Equation 3 may not be known. 

In turn these values of P and M can be used in Equation 1 and solved iteratively for the geometry of interest to determine 

safe storage conditions.  
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Equation 1: The dimensionless heat generation parameter [δ] is compared to the critical number [δcrit]. If δ > δcrit then 

thermal run-away occurs (Frank-Kamenetskii, 1939). δ has different values for different shapes [for example 2.76 for equi-

cylinders, 2.52 for cubes] (2007). Where r is basket radius, To is the oven temperature and P & M are defined below. 
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Equation 2: The slope from the Frank-Kamenetskii plot is labelled P. Where E is the activation energy of oxidative 

decomposition and R is the universal gas constant. 
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Equation 3: The intercept from the Frank-Kamenetskii plot is labelled M. Where E is the activation energy of oxidative 

decomposition, R is the universal gas constant, ρ is the powder density, Q is the heat from oxidative decomposition, A is the 

rate of oxidative decomposition and λ is the internal rate of heat transfer. 

 

Finding the critical temperatures can be a time-consuming and resource intensive activity. For the smallest basket in the line 

a guess is made where the critical temperature might be. After testing at this temperature, the results are used to decide 

whether to increase or decrease the temperature depending on how close to the critical temperature the result appears to be.  

This process is repeated until two temperatures are obtained 2 K apart, which at the higher temperature the material exhibits 

thermal runaway, and at the lower it does not. From Equation 1 it follows that increasing the basket size will decrease the 

critical temperature [to maintain the same value of δ]. Depending on the relative sizes and activation energy of oxidation, the 

critical temperature for the next basket size is around 10-30 K lower. 

Once the critical temperature has been located for 4 or more basket sizes, linear regression is used to obtain P and M. 

Historically, the average of the two temperatures at each basket size is used to fit the line [dashed line, Figure 1]. However, 

the critical temperature could be located anywhere in the region between the maximum stable temperature and minimum 

temperature where thermal runaway is observed. 

Bayesian linear regression can be used to obtain the confidence intervals on the plausible slopes that could lie in this region, 

but this is beyond the general practitioner. A simpler approach is to fit two lines which try to join the maximum stable 

temperature at the smallest scale with the minimum thermal runaway temperature at the largest basket size [and vice-versa]. 

The lines must be drawn however so that all the results of the same type [stable or thermal runaway] lie on the same side of 

the line [solid lines, Figure 1]. 

 

Figure 1: Frank-Kamenetskii plot of basket line results for Lignite taken from a round robin study (Frost et al., 2016). The 

dashed blue line is the historically used fit which considers only the maximum stable temperature for each size of basket. 

The solid blue line is the shallowest fit consistent with the data whilst the solid orange line is the steepest fit consistent with 

the data.  
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The equations for these two lines yield the plausible ranges for P and M. Rather than extrapolating from the laboratory data 

these values are used directly in Equation 1 which can be solved iteratively to obtain the critical temperature for the size and 

geometry of interest. 

In Figure 2 the prediction uncertainties for a 1 m3 package were calculated by fitting a mixed linear model to the data from 

multiple laboratories [pooled limit] and applying it to extrapolated predictions (Frost et al., 2016). The procedure in Figure 1 

can be used to obtain the plausible ranges for P and M for each laboratory separately and then solve Equation 1 directly. This 

gives similar results and prediction uncertainties whilst only requiring the data from a single lab.  

 

Figure 2: Comparison of plausible slope results with pooled estimates from round robin study. The pooled estimate was 

obtained by taking the robust mean of the laboratory maximum non-ignition results, for each basket size and extrapolating 

from the laboratory to real world scales using a Lueschke plot of ln(V/S) versus 1/T [where V = volume, S = surface area 

and T = temperature in K]. Precision parameters derived from the data via a mixed linear model were used to add uncertainty 

limits to the point estimate (Frost et al., 2016). Comparable results are obtained for other volumes. 

 

Why Use Simulations? 

Since the underlying phenomena can be expressed mathematically, modern physics software has a high enough accuracy to 

reproduce the self-heating behaviour of materials via simulations (Azhar and Arbaee, 2018, Schmidt et al., 2003).  

All simulations are biased by some unknown amount due to simplifications used in the model building process [in this case 

these are that the overall oxidation process follows zero order Arrhenius behaviour, material contains no trapped solvents, 

material doesn’t melt or release vapour prior to thermal-runaway, and that material is not consumed in the thermal run-

away]. Additionally, real world data is subject to noise, such that results obtained experimentally won’t match the theory 

exactly. 

Despite this, moving through the simulated chemical space and real chemical space, it is reasonable to expect the topography 

to be similar. The simulation becomes a map, if you knew where you were, it could guide your decision making. 

Chemical space is large and whilst the terms in the thermal equation could take any number, only a limited range of values 

are plausible (Pearson, 2020). Some combinations of properties result in materials that are unstable at room temperature - 

these would never be tested. Others are explosive and screened out early in the testing process. Equally powders not 

observed to being self-heating under conditions that can be created in a laboratory oven are not of interest. This is 

summarised in Figure 3. 

Rather than trying to produce simulations that match the experimental data [as has been the previous approach], this reduced 

chemical space is sufficiently small to allow detailed exploration. Utilizing experimental design and automation, simulations 

can be carried out for a range of fictious materials which cover the entire space. There is also the potential to build surrogate 

or meta-models which link together the results from different simulated thermal tests. These meta-models allow 

generalisation to new materials which were not specifically simulated. 
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Figure 3: For a material to be subject to a basket line test, it must be a powder, stable at room temperature, not explosive and 

show evidence of self-heating [i.e. UN Division 4.2, Grewer-oven or similar]. The white square represents the sub-set of 

chemical space we wish to understand. 

 

The results for 12,000 simulated materials from the square in Figure 3 are summarised below in terms of P and M. The space 

is bounded as materials to the left of the Packing Group II region are unstable at 298 K [25 °C] and materials to the right of 

the Not Division 4.2 region are stable to beyond 675 K [402 °C]. The top right corner of the chemical space is where most of 

the explosive materials are located. 

 

Figure 4: UN Division 4.2 results for 12,000 materials sampled from the reduced chemical space. The Frank-Kamenetskii  

method was used to locate Tcrit for 25 and 100 mm cubes and thus categorise them. The M and P values determined 

experimentally for a range of materials have been added for context (Tamburello, 2011). Open circles indicate explosives. 

 

Putting It Together 

The simulation results provide additional prior information to help guide the experimental programme. The activation 

energy, heat and rate of the oxidation is the key information gained from a basket line. The results of a thin layer or ramped 

thermal stability test depend heavily on the same material properties and so are strongly correlated. The correlations that 

exist between these tests can be estimated using simulations and the results of these meta-models then applied to laboratory 

data (Pearson, 2020). 

Materials which undergo thermal runaway before 385 K in a ramped test or 425 K as a 5mm layer [112 and 152 °C] are 

likely to be in Packing Group II. Equally materials which exhibit thermal runaway above 500 K in a ramped test or 550 K as 

a 5mm layer [227 and 277 °C] are likely to be Not Self-heating Division 4.2 [Figure 5].   

 

 

 

 

Chemical Space 

Not Explosive 
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Figure 5: The simulated UN Division 4.2 results for 175 materials sampled from across the reduced chemical space. 

COMSOL Multiphysics® was used to locate Tcrit for 25 mm and 100 mm diameter equi-cylinders of each material and thus 

categorise them. The minimum ignition temperature for a 5 mm layer and the thermal runaway temperature for ramped 

thermal stability test in a 50 mm diameter cylinder were also determined for each material via simulations (Pearson, 2020).  

 

As discussed previously locating the result for the first basket in the line relies on trial and error and the number of tests 

needed depends heavily on how close the initial guess is. Using the correlations obtained from simulations, the results from a 

ramped temperature test can be used to give a starting temperature for the isothermal basket test. 

 

Figure 6: Predicted critical temperature for a 50 mm equi-cylinder of Lignite, using a meta-model built from simulation data 

(Pearson, 2020). Ramped Test and ρ are measured experimentally; heat capacity [c], heat transfer coefficient [htc], and λ are 

taken from the literature. Note the actual tests were carried out in 50 mm cubes and gave a result of 387 K [114 °C]. 

Variability in the exact dimensions of the cubic baskets means that predictions for an equi-cylinder are close enough to be 

useful. 

 

Equally for the larger baskets, the search window is smaller but still sizeable. The results from a ramped temperature test can 

be used in conjunction with the results from the first basket in the line. The first basket critical temperature provides an 

anchor whilst the ramped test provides a direction to search in (by being a proxy for the activation energy). This helps cut 

down the number of tests required to locate the critical temperature at larger basket sizes. 

Once the critical temperature has been located for two basket sizes, the plausible slopes approach can be used with a 

Lueschke plot to extrapolate to larger basket sizes [Figure 7]. The prediction window can then be used to guide further 

testing, rather than relying on experience or rules of thumb. 

Using the plausible slope method there is no requirement to locate the critical temperature to within 2 K at every basket size. 

In the example in Figure 7, if the practitioner had been using the plausible slopes, the most efficient search method would 

have been to test the middle of the predicted range for the next size basket. This has the effect of halving the uncertainty in P 

and M each time. 
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Figure 7: After using the simulation data to get a starting point for the smallest two baskets in the line, a Lueschke plot of 

ln(V/S) versus 1/T [where V = volume, S = surface area and T = temperature in K] can be used to extrapolate to larger 

basket sizes (Leuschke, 1981). Left; plausible slopes after locating critical temperature for 50 mm & 60 mm cubic baskets. 

Right; plausible slopes after locating critical temperature for 50 mm, 60 mm & 85 mm cubic baskets. 

 

If material was limited, after completing one test at 85 mm, they could go straight to 100 mm using the updated range. Both 

these tests would have resulted in a thermal runaway if choosing temperatures based on the bisecting the prediction range. A 

second test at 85 mm, to obtain a result not leading to thermal runaway, would be advised to confirm the prediction range. 

This could be done by choosing the edge of the prediction range at 85 mm expected to not result in thermal runaway. This 

test doesn’t improve the estimate of P and M but gives greater confidence in the results. 

Finally, time and material allowing, bisecting the prediction range at 100 mm would result in no thermal runaway, halving 

the prediction range for P and M. Since estimates of P and M are available throughout this process [using Equation 1], the 

search could be terminated early. This might be triggered if the uncertainty in P reduced to less than 2400 K [20 kJ/mol] or 

there was strong evidence the material would be [un]stable at the size and geometry of interest. 

 

Conclusion 

Results from ramped thermal stability tests can give estimates of key material properties. When combined with correlations 

derived from simulation studies it provides a map to explore the chemical space. After completing half of the basket line, the 

plausible slopes method [on a Frank-Kamenetskii plot] can be used to estimate the range containing the critical temperature 

at the geometry of interest. Subsequent tests in the line can then focus on improving the estimate to the required accuracy. 

It represents a pragmatic way to apply Bayesian principles to update expectations without using arithmetic or complex 

modelling tools. This alternative approach allows the experimentalist to more efficiently plan future tests and adapt the 

programme to the available material. The critical temperature at real world scales can be reported with reasonable 

uncertainty limits whilst using less than 2 litres of material. 
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Table 1: Values of P and M used to calculate the results in Figure 2. The pooled limits are taken from (Frost et al., 2016) 

pages 47 and 48. 

Data from (Frost et al., 2016) pages 96 to 99 was used to construct Frank-Kamenetskii plots to which the plausible slope 

method was applied to estimate P and M above. The thermal runaway temperatures were obtained by adding the Difference 

between “Go” and “No Go” to the reported maximum stable temperatures.   

Substance Lab P M FIBC 1 m3 [ºC] Ships Hold 27 m3 [ºC] 

Lignite 11 11024 48.3 46.7 26.4 

Lignite 11 13429 54.6 56.8 39.2 

Lignite 118 11884 50.6 50.2 31.1 

Lignite 118 15485 60.1 62.6 46.7 

Lignite 233 12291 51.8 50.5 31.9 

Lignite 233 15704 60.8 61.9 46.3 

Lignite 238 13360 54.5 55.6 37.9 

Lignite 238 14974 58.8 60.7 44.4 

Lignite 840 11255 49.0 47.0 27.1 

Lignite 840 13473 54.8 56.2 38.6 

Lignite 908 11354 49.3 47.5 27.7 

Lignite 908 12934 53.4 53.8 35.7 

Pea Fibre 106 14394 52.7 99.7 78.6 

Pea Fibre 106 20985 67.8 118.8 102.8 

Pea Fibre 118 19152 63.7 114.3 97.1 

Pea Fibre 118 23680 74.1 122.8 108.2 

Pea Fibre 177 18019 60.9 112.4 94.4 

Pea Fibre 177 23587 73.7 123.9 109.3 

Pea Fibre 251 16783 58.3 107.3 88.5 

Pea Fibre 251 21120 68.2 118.2 102.3 

Pea Fibre 840 16621 57.9 107.2 88.2 

Pea Fibre 840 20859 67.6 117.5 101.5 

Pea Fibre 914 16773 58.2 108.1 89.2 

Pea Fibre 914 21868 69.9 119.6 104.2 

Skimmed Milk Powder 28 10151 44.5 58.7 35.1 

Skimmed Milk Powder 28 12257 49.7 70.2 49.2 

Skimmed Milk Powder 228 10487 45.5 59.4 36.4 

Skimmed Milk Powder 228 11228 47.3 63.8 41.7 

Skimmed Milk Powder 233 12561 50.2 74.2 53.2 

Skimmed Milk Powder 233 15150 56.5 83.9 65.4 

Skimmed Milk Powder 238 10841 46.3 61.7 39.2 

Skimmed Milk Powder 238 13165 52.1 72.8 52.9 

Skimmed Milk Powder 914 10815 46.3 61.3 38.8 

Skimmed Milk Powder 914 12826 51.2 71.6 51.4 

Wood Pellets 11 11830 45.7 101.9 75.9 

Wood Pellets 11 12695 47.6 107.2 82.4 

Wood Pellets 28 11061 44.1 95.9 69.0 

Wood Pellets 28 12906 48.2 106.6 82.2 

Wood Pellets 106 12678 47.8 104.2 79.8 

Wood Pellets 106 13813 50.2 110.3 87.0 

Wood Pellets 177 12207 46.7 102.4 77.2 

Wood Pellets 177 14533 51.8 113.9 91.4 

Wood Pellets 228 12384 47.0 103.8 78.8 

Wood Pellets 228 13073 48.6 107.2 83.1 

Wood Pellets 908 11501 45.1 98.6 72.5 

Wood Pellets 908 14018 50.6 112.4 89.3 

Lignite Pooled Limit   46.1 25.9 

Pea Fibre Pooled Limit   106.1 87 

Skimmed Milk Powder Pooled Limit   58.8 35.4 

Wood Pellets Pooled Limit   97.2 70.3 

Lignite Pooled Limit   59 42.3 

Pea Fibre Pooled Limit   119 103.4 

Skimmed Milk Powder Pooled Limit   71.7 51.7 

Wood Pellets Pooled Limit   110.1 86.6 
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