

Excellence in Chemistry

Doubling the yield of a gas-liquid acylation process with intensified continuous reactor - an industrial case study

Producing a Valuable Product takes 5 days at only 40% yields

Fragrance and flavouring product is highly valuable

- Product is sensitive to temperature but reaction is highly exothermic
- High possibility to overreact forming heavier components
- Energy intensive multi-step process

Jonty Thornton

Being a scientist is

NOT about knowing

the answers

It is about

ASKING

Chemical Engineer, Stoli Chem, UK

Ask me about

Blues Guitar

- Arsenal
- Chemical Engineering

Education and career

- Galaxy Kayaks logistics operator
- University of Sheffield (2016-2021)
- Faurecia Improvements Engineer (2019-2020)
- Quality Teach Tutor (2021-2022)
- Stoli Chem Chemical Engineer (2022-2024)

Interest

Sports – football and cricket

- Cooking
- History
- Learning new things (science, music)

The key to interfacial mass transfer is large area and fluid movement

rate = $k_L a \Delta C$ ~ mixi

~ mixing energy

Multi-dimensional Process Optimisation

- Mixing Energy
 - How does mixing intensity affect performance?
- Catalyst Amount
 - How much/little catalyst we can utilise to still be profitable, in solution and safe?
- Concentration of reactant in solvent
 - How are reaction rates and downstream purification affected by this?
- Residence time
 - How fast can the reaction get? What size reactor do we need at scale to meet customer demands?

Factors affecting gas concentration

Gas Ratio

- Does having a molar excess provide
- Temperature
 - How does varying temperature affect performance? Does gas solubility come into play?

• Pressure

 What trade off can we afford between high pressure and expensive equipment?

Initial yields of only 20%

Initial experimentation indicated low valuable product

Concentration (wt%)	Residen time (mi	nce Tempe in) (o0	rature C)	Mixing RPMs	Cata	alyst Molar Ratio	Molar Ratio of Propylene	Pressure (bar)
8	30	0		300		0.75	1	Ambient
	Conv		%)	Selectivity (%)		Yield (%)		
		80		37		20		

E)-Selective Friedel-Crafts acylation of alkynes to βchlorovinyl ketones: Defying isomerizations in batch reactions by flow chemistry approaches

Residence time control allows for improved reaction

Catalyst amount – an engineering compromise

- Gambacorta and co suggests that high stoichiometry amounts typical for reaction.
- 1.2 molar ratio is our cap for catalyst since solution is saturated
- On testing this out just like with penicillin, Teflon and Vaseline

Conversion (%)	Selectivity (%)	Yield (%)
99.9	82	82

• More catalyst = 20% increase in yield. No brainer

Gambacorta G, Sharley JS, Baxendale IR. A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries. Beilstein J Org Chem. 2021;17:1181–312.

Kinetically limited regime

- Reducing mixing rpms 10 fold does not drop conversion equivalently
- gas flowrate does a lot of the heavy lifting with regards to mixing compared to the stirrer
- velocity that disturbs the liquid enough to act as a mixer itself

How much energy can we save?

- Scaled concentration until performance dropped managed to increase substrate up to 20%.
- This means that we can reduce distillation energy costs by 60%
- Lab scale tests and model indicates that:
 - 140 kWh/kg of product using current procedure
 - 13 kWh/kg of product using developed flow
- That's an 11 fold reduction in energy this step

Next Step: Scaling

Current scaled design utilises similar number of tanks and baffled interior so that micro mixing time is matched at scale

Fortunately managed to optimised conditions without significant pressure - Allows for CAPex saved

Pilot testing begins in Feb!

Process only takes 48 hours

Yield Increased to 80%

Revenue doubled

11 fold Energy reduction Scaling up in Feb!

