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The Pipeline Release Rate Model (PiRRaM) is used by HSE to predict the transient characteristics of accidental 

releases from pipelines transporting pressure-liquefied substances (e.g., ammonia, butane, propane and ethylene). 

PiRRaM is based on DNV PHAST’s PipeBreak model (Webber et al., 1999), but includes additional physics, 
enabling its application to cases where the hole diameter is small in comparison to the pipe diameter. The model 

smoothly transitions from saturated choked flow for full-bore ruptures and large holes, to incompressible liquid 

outflow for small holes. 

PiRRaM adopts a method for managing the transition between large and small hole behaviour using a rarefaction 

wave model. Most current models assumed that the contents of the pipe instantaneously decompress to saturated 

conditions for simplicity. The rarefaction balancing method provides a phenomenological framework to estimate 
the mass flow rate at the instant the pipe is opened, using the physics of rarefaction waves to bridge the gap 

between saturated choked flow and incompressible liquid flow. 

An additional challenge is linking the initial mass flow rate to the later saturated two-phase flow. PiRRaM 
addresses this by assuming that the next stage is characterised by a steady-state liquid flow into the orifice, which 

is choked at the saturated liquid mass flow rate. This implies that the flow in the pipe at the start of the saturated 

solution may consist of both a stationary zone and an expanding liquid zone. The hole size determines whether 

only the expanding liquid region is present, or if both the expanding and stationary zones exist. The solution 

thereafter includes an expanding saturated two-phase flow zone in addition to the expanding and stationary liquid 

zones.  

Full-bore ruptures and large holes correspond to high mass flow rates, where both a stationary and a relatively 

short expanding liquid zone are likely. In contrast, small holes with much lower mass flow rates have much longer 

expanding liquid zones, which may exceed the length of the pipe. In this case, the entire pipe is filled with 
expanding liquid. The key observation is that the amount of mass required to leave the pipe to transition into the 

saturated flow solution depends on the hole size. This means that for full-bore ruptures, less material is required 
to be released for the transition to take place than for small holes. Consequently, the transition to saturated flow 

is predicted to be much more rapid for full-bore ruptures than small holes, which is observed in experiments. 

To link the initial mass flow rate to the beginning of the saturated solution, PiRRaM assumes a mass conserving 
functional form which releases an amount of material depending on the hole size.  This is not ideal, as the model 

in some cases appears to predict unphysical (supersonic) sound wave propagation. However, the error introduced 

by this approach is acceptably small and the benefits of a consistent approach to link the initial outflow model to 
the saturated flow solution far outweigh the disadvantages of assuming apparent supersonic sound wave 

propagation. Model sensitivity and validation evidence for the new model is also presented. 

In summary, the rarefaction balancing method is a pragmatic framework which is designed to allow the approach 
within PipeBreak to be extended to model releases where the hole size is a fraction of the pipe diameter. In such 

cases the fluid is likely to escape confinement as an incompressible metastable liquid. The approach adds 

negligible computational burden to the original model, with the entire decompression taking seconds to run.  This 
paper presents important additional details about the model which were not included in the previous Hazards 32 

paper describing PiRRaM. 

(PiRRaM, HSE, Major Accident Hazard Pipelines, Decompression, Mass Flow Rate, Holes, Liquid 

Compressibility Effects,) 

1 Introduction 

The Health and Safety Executive (HSE) uses a computer model, MISHAP (Model for the estimation of Individual and Societal 

risk from HAzards of Pipelines), to calculate the risks to people, and ultimately the land-use planning (LUP) zones from Major 

Accident Hazard (MAH) pipelines carrying flammable substances. 

MISHAP contains several sub-models to calculate the release rates and the consequences of fireballs and jet fires should a 

pipeline fail. As part of a programme of continuous development and improvement, the need for a new independent release 

rate model that would be suitable and adaptable to HSE’s future needs and changing IT environments was identified. HSE’s 

PiRRaM (Pipeline Release Rate Model) was developed and has been described in a previous Hazards 32 paper (Newton, 

2022). Here, the aim is to provide additional information regarding the development and implementation of PiRRaM, 

specifically in relation to the transition between the frictionless rarefaction balancing method, and the later saturated two-phase 

solution.  

The issue of modelling the transient decompression of pipelines transporting pressure liquefied fluids has been of interest to 

loss prevention modellers for some time, and has received considerable attention (Mahgerefteh et al., 2011; Oke et al., 2003; 

Webber et al., 2010; Yi & Mahgerefteh, 2020). The principal underlying issue is that pressure liquefied fluids escaping 

confinement can behave as either incompressible liquids, or as choked two-phase releases, depending on the pressurisation 

above saturation. PiRRaM solves the issue of blending between the different flow regimes using the rarefaction balancing 

technique.     

This paper starts by revising the frictionless rarefaction balancing mechanism and introduces a useful diagram describing the 

different scenarios that can occur. With the calculation of the initial mass flow rate firmly established, the pressurised liquid 
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flow solution is derived which allows the characterisation of the conditions at the beginning of the saturated two-phase flow 

solution. The initial mass flow rate calculation and beginning of the saturated flow represent two important stages in the 

modelled evolution of the flow. Linking these stages is a mass conserving interpolation method which bridges the gap between 

the initial frictionless and later frictional flow solutions. The new method is first examined to understand its sensitivity to pipe 

length, before being compared to experimental data to demonstrate the effectiveness of the rarefaction balancing technique 

and the assumed interpolation method.  

2 High Level Overview 

PiRRRaM solves the 1-dimensional quasi-steady compressible pipe-flow equations on the assumption that the fluid in the pipe 

can be categorised into a maximum of three zones of flow: 

• a stationary liquid zone, 

• an expanding liquid zone, and 

• an expanding two-phase zone. 

All three zones may exist simultaneously, though it is possible that only one or two zones may be present depending on the 

scenario. For example, the pipe is initially assumed to be filled with stationary liquid, whereas later during the decompression 

the expanding liquid zone or two-phase zone may fill the entire pipe. Combinations are also possible, where the fluid in the 

pipe is modelled as consisting of an expanding liquid with either an expanding two-phase zone or a stationary zone. If the fluid 

is a saturated liquid, i.e. it’s transported at the saturated vapour pressure and not pressurised above it, then no expanding liquid 

zone will be present. PiRRaM uses analytical solutions to the conservation equations to determine the mass of each respective 

zone for a given mass flow rate before mass conservation is used to build the transient solution from the combination of the 

mass flow rate and inventory. Newton (2022) provides detailed information describing the model.  

The focus of this paper is modelling the transient mass flow rate between the initially stationary liquid state and the point at 

which two-phase flow begins, which are termed stages 1 and 2 respectively. In stage 1, the rarefaction balancing method is 

used to estimate the initial mass flow rate. At stage 2, the fluid in the pipe is presumed to consist of an expanding liquid zone1 

with a uniform pressure gradient that is sufficient to provide a mass flow rate corresponding to a choked liquid mass flow rate 

(Webber et al., 1999). The method is a pragmatic approach to solving the transition between the frictionless rarefaction wave 

dominated flow and the later friction dominated flow.  

Figure 1 shows a schematic plot of the pipe inventory against time during the earliest stage of the release, where the gradient 

of this line at any point represents the mass flow rate2. Stage 1 and Stage 2 are highlighted corresponding to initial mass (𝑀0, 

kg) occurring at moment of opening (𝑡 = 0,  s) and the total mass at the beginning of saturated flow (𝑀sat, kg) which occurs 

at the later time (𝑡sat, s). The mass flow rates at Stages 1 and 2 are given by the rarefaction balancing method (𝑚̇0, kg s−1), kg 

s-1) and the choked saturated liquid outflow model (𝑚̇sat, kg s-1) respectively. In essence, the following calculations therefore 

relate to calculating: 1) the initial mass flow rate (𝑚̇0); 2) the total mass at the beginning of saturated flow (𝑀sat); 3) the time 

when saturated two-phase flow starts (𝑡sat); and 4) a mass conserving interpolation method. The following sections therefore 

describe the rarefaction balancing method, the pressurised liquid flow solution, and the interpolation method.     

 

1 A stationary liquid zone may be present depending on the length of pipe and the hole size. 

2 In Figure 1, 𝑚̇ is represented as the derivative of the pipe inventory and is consequently a negative value,  
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Figure 1: Schematic showing the interpolation used during the initial decompression from pressurised conditions. 

3 The Rarefaction Balancing Mechanism 

3.1 Background 

This section focuses on the initial mass flow rate of liquid released from the pipeline immediately after the pipeline is punctured 

or ruptured. The basis for this analysis is the phenomenological mass balancing equation, which itself emerges from a 

generalisation of a similar calculation for ideal gas cases given in Landau and Lifshitz (1987). The mass balancing equation is 

given by:  

𝐴hole𝐺hole(𝑃d) = 𝐴pipe𝐺rarefaction(𝑃d) (1) 

Where: 

• 𝐴hole is the area of the hole (m2) 

• 𝐴pipe is the internal cross-section area of the pipe (m2) 

• 𝐺hole(𝑃d) is the mass flux density of fluid leaving through the hole (kg m−2s−1) 

• 𝐺rarefaction(𝑃d) is the mass flux density of fluid in the pipe due to the rarefaction expansion (kg m−2s−1) 

• 𝑃d is the pressure downstream of the rarefaction wave (Pa) 

This equation describes how the rarefaction wave provides a mass flow rate into a frictionless zone that, for reasons of mass 

conservation, needs to balance the mass release rate out of the pipe. The following process is therefore referred to as the 

rarefaction balancing outflow model. The following assumptions are made in the initial flow rate model: 

Rarefaction Balanced Outflow Assumption 1: Discharge Coefficient 

For the bounding case in the new model, where the unchoked flow model is used (i.e. Bernoulli’s equation for 

incompressible flow), it is assumed the discharge coefficient is 𝑐d = 1 for a full-bore rupture (FBR), and 𝑐d = 0.6 

for all other holes smaller than full-bore rupture. For the other bounding case involving choked flow, the discharge 

coefficient is assumed implicitly to be 𝑐d = 1. 

Rarefaction Balanced Outflow Assumption 2: Bernoulli and Saturated Two-phase Flow Models 

Two bounding cases are used to model choked and unchoked flow, i.e. the saturated two-phase pipeline model and 

Bernoulli’s equation, these have their own implicit assumptions.  

Bernoulli’s equation for incompressible flow with 𝑐d ≈ 0.6 has been found to accurately predict the release rates from vessels 

containing flashing liquids through circular holes, at pressures equalling or exceeding their saturation vapour pressure (Britter 

et al., 2011; Richardson et al., 2006). Steady state releases of compressed liquid through pipes with holes at the end recover 

the same behaviour when the hole is sufficiently small (Cowley and Tam, 1988). As such, unchoked liquid outflow is assumed 

to be the upper limit on the likely mass flow rate for compressed flows.  

3.2 Regime Diagram 

Figure 2 shows regime diagram which plots the conditions corresponding to between different outflow regimes, and the 

transitions between them.  The outflow regimes are governed by the dimensionless pressure (the initial pressure normalised 

Mass of fluid 

in pipe 

Time 

Initial mass, 𝑀0 
Stage 1: Moment of rupture 

Initial mass release rate, 𝑚̇0 (slope) 

from rarefaction balancing model  
 

Three Zone Model Interpolation 

Stage 2: Beginning of two-phase flow 

Mass release rate, 𝑚̇sat (slope) 

from choked saturated liquid flow 

Mass at beginning of 

two-phase flow, 𝑀sat 
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by the initial saturated vapour pressure, (𝑃0

∗ = 𝑃0𝑃sat(𝑇0)−1) as a function of the dimensionless rupture/hole area (hole area 

normalised by the pipe area3, 𝐴hole
∗ = 𝐴hole𝐴pipe

−1 ). There are four zones in the regimes diagram: a zone of unchoked liquid 

flow for sufficiently large pressures (brown shading); a zone where choked saturated flow is likely (light blue); a transition 

zone where the flow is limited by the rarefaction wave (light green zone); and a zone corresponding to saturated two-phase 

initial conditions which is outside the scope of the current investigation as two-phase initial conditions are not considered by 

HSE.  

 

Figure 2 Regime diagram plotting the dimensionless pressure (𝑃0
∗) against the dimensionless hole area (𝐴hole

∗ ).  The brown  

shaded area indicates unchoked liquid outflow, green shaded region indicates rarefaction wave limited outflow, and light 

blue shaded zone  indicates saturated choked flow. This diagram is only indicative: the slopes of the two lines, 𝜔 and Ω are 

dependent upon material properties and the initial temperature. The region 𝑃0
∗ < 1 (dark blue shaded area) is out of scope as 

this corresponds to a two-phase flow initial condition.  

In the unchoked liquid outflow zone (brown), the mass flow rate contribution from the rarefaction wave is sufficient to drive 

an incompressible liquid outflow at a mass flow rate significantly exceeding the saturated choked flow value. In the choked 

saturated liquid flow zone (light blue), the rarefaction wave is weak, and it is assumed that the outflow corresponds to a 

saturated choked flow. The transitional flow regime (green zone) is referred to as the rarefaction balanced outflow. Here, the 

rarefaction wave produces a mass flow rate exceeding the choked flow value, but insufficient to balance liquid outflow, and 

the mass flow rate is chosen to be the rarefaction balanced mass flow rate. The lines formally defining the transition between 

these regimes are introduced in the subsequent sections.   

Also shown in Figure 2 are lines indicating constant hole area and variable pressure (the vertical dashed yellow line), and fixed 

initial pressure and varying hole area (dark blue dashed line). These are used in later sections to qualitatively discuss the 

behaviour of the model. 

 
3 For the case of a hole midway along a pipe, either the pipe area needs to be doubled or the hole area halved,  to account for 

the pipes on both side of the hole contributing to the release and doubling the area of the rarefaction wave.  
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3.3 Rarefaction Balancing and the Regime Diagram 

The following analysis derives the switching criteria based upon the consideration of the pressure difference between two 

positions: the first is in the undisturbed fluid at the upstream edge of the rarefaction wave; and the second is at the discharge 

plane. It is important here to be clear about the use of notation to identify which parameters are involved.  

The conditions upstream of the rarefaction wave are denoted by a subscript 0, and the conditions downstream of the rarefaction 

wave are denoted with a subscript d. Assuming that the liquid is initially stationary4, i.e. (𝑈0 = 0), the rarefaction mass flux 

density (mass flow rate per unit area associated with a drop in pressure from P0 to 𝑃d, denoted by 𝐺rarefaction)   is given by: 

𝐺rarefaction = 𝑐sound(𝜌0 − 𝜌d) (2) 

where 𝜌d (kg m−3) is the density in the frictionless zone downstream of the rarefaction wave where the pressure is 𝑃d (Pa), 

and 𝑐sound (m s−1) is the liquid sound speed. As the pressure is uniform in this zone,  𝑃d is also occasionally referred to as the 

orifice pressure. It is assumed that this loss of liquid from the pipeline from the rarefaction wave is balanced by either a choked 

or an unchoked liquid outflow at the orifice. These two scenarios are described in the next two subsections. 

3.3.1 Rarefaction Balanced by Choked Liquid Outflow 

This section determines the conditions at which the mass flow rate corresponding to the rarefaction wave and choked saturated 

liquid outflow match exactly.   

In the scenario where the rarefaction is balanced by choked liquid outflow, the pressure at the discharge plane, Pd, is equal to 

the saturation vapour pressure, 𝑃sat. The mass flux density (𝐺hole,sat.choked., kg m−2s−1) through the orifice is calculated from 

the equation given in Webber et al. (1999), which is reproduced below for an incompressible liquid:  

𝐺hole,sat.choked =
𝜙

√𝑇0𝑐p − 𝜙𝜌sat
−1

. 
(3) 

Here, 𝜙 is given by Clausius Clapeyron relationship  𝜙 = 𝑇0
𝑑𝑃sat 

𝑑𝑇𝑡
│𝑇=𝑇0

(Pa), where 
𝑑𝑃sat

𝑑𝑡𝑇
 (Pa K−1) is the gradient of the 

saturated vapour pressure with respect to temperature, and 𝜌sat (kg m−3) is the saturated liquid density, and 𝑐𝑝 is the specific 

heat at constant pressure (J/kg/K).  To determine when these conditions apply, the starting point is the equation for the mass 

flux density driven by rarefaction, where the density at the discharge plane, 𝜌d, is taken to be the liquid density at the saturation 

vapour pressure, 𝜌sat. The equation for 𝐺rarefaction,max is then given by: 

𝐺rarefaction,max = 𝑐sound(𝜌0 − 𝜌sat) (4) 

To conserve mass, the mass flux from the liquid rarefaction along the whole pipe cross-section (𝐴pipe𝐺rarefaction) must 

balance the choked mass flux of saturated liquid through the hole in the pipeline (𝐴h𝐺hole,sat.choked) via: 

𝐴pipe𝐺rarefaction,max = 𝐴hole𝐺hole,sat.choked (5) 

and therefore: 

𝑐sound(𝜌0 − 𝜌sat) =
𝐴hole

𝐴pipe
𝐺hole,sat.choked (6) 

which can also be written using the definition of the speed of sound5 as: 

(𝑃0 − 𝑃sat)

𝑐sound
=

𝐴hole

𝐴pipe
𝐺hole,sat.choked.. (7) 

Here 𝑃sat is the saturation vapour pressure at the initial temperature, T0. Rearranging the above equation to express it in terms 

of the ratio of the initial pressure to the saturation vapour pressure gives: 

 
4 The effect of pumping is likely to be insignificant as the fluid speed is low in comparison to the sound speed and will likely 

cancel out in the case of a release from the pipe midpoint.  

5 The speed of sound (𝑐sound, m s−1) in a fluid is given by 𝑐sound
2 =

𝑑𝑃

𝑑𝜌
|

Δ𝑆=0
where the derivative of pressure with respect to 

density is evaluated at constant entropy.  
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𝑃0

𝑃𝑠𝑎𝑡
= 1 +

𝑐sound

𝑃sat

𝐴hole

𝐴pipe
𝐺hole,sat.choked. (8) 

To aid interpretation of the underlying physics, (8) is expressed in terms of the pressure ratio (𝑃0
∗ = 𝑃0 𝑃sat⁄ ) and area ratio 

(𝐴hole
∗ = 𝐴hole 𝐴pipe⁄ ).  

𝑃0
∗ = 1 + ΩAhole

∗ , where Ω =
𝑐sound

𝑃sat
𝐺hole,sat.choked. (9) 

The quantities 𝐴hole
∗    and 𝑃0

∗  represent the horizontal and vertical axis of the regime diagram in Figure 2. 

3.3.2 Rarefaction Balanced by Unchoked Liquid Outflow 

This section finds the conditions at which the mass flow rates corresponding to the rarefaction wave and unchoked liquid 

outflow match exactly.   

In the scenario where the rarefaction is perfectly balanced by unchoked liquid outflow, the mass flux density (𝐺hole,liq,unchoked, 

kg m−2𝑠−1) is calculated from Bernoulli’s equation for incompressible liquid flow as follows: 

𝐺hole,liq,unchoked = 𝑐d√2𝜌d(𝑃d − 𝑃atm) (10) 

where the coefficient of discharge is either6 𝑐d = 1 for full-bore ruptures, or 𝑐d = 0.6 for any holes with an area smaller than 

the full cross-sectional area of the pipe.  

The pressure, 𝑃d, in the above equation is found by balancing the unchoked liquid outflow against the mass release rate driven 

by rarefaction, i.e. 

𝐴pipe𝐺rarefaction = 𝐴hole𝐺hole,liq.unchoked (11) 

which upon substitution of (2) and (10) becomes: 

𝐴pipe𝑐sound(𝜌0 − 𝜌d) = 𝐴hole𝑐d√2(𝑃d − 𝑃atm)𝜌d (12) 

where the density (𝜌d, kg m−3) is evaluated at the initial temperature, (𝑇0, K) and the pressure (𝑃d, Pa) using the Reid et al. 

(1987) equation of state (specifically the Thomson extension of the Hankinson-Brobst-Thomson (HBT) method for 

compressed liquids, although any accurate EOS can be used). The speed of sound (𝑐sound,m s−1), is estimated from: 

𝑐sound = √
𝑃0 − 𝑃d

𝜌0 − 𝜌d
 (13) 

and (12) is solved numerically to find the pressure, Pd. Once this pressure is known, it can be used to find the mass flux density 

through the hole using Bernoulli’s equation for incompressible flow, (see ((10)). 

To find the set of conditions under which the rarefaction is balanced by unchoked liquid outflow, the limiting case is considered 

where the pressure at the discharge plane is the saturation vapour pressure, 𝑃d = 𝑃sat(𝑇0). Balancing the mass flow rates for 

this scenario then provides: 

(𝑃0 − 𝑃sat)

𝑐sound
=

𝐴hole

𝐴pipe
𝐺hole,liq.unchoked (14) 

which can be rearranged in terms of the pressure ratio (𝑃0 𝑃sat⁄ ) as follows: 

𝑃0

𝑃sat
= 1 +

𝑐sound

𝑃sat

𝐴hole

𝐴pipe
𝐺hole,liq.unchoked (15) 

As before, the above equation can be expressed in terms of the pressure ratio (𝑃0
∗ = 𝑃0 𝑃sat⁄ ) and area ratio 

(𝐴hole
∗ = 𝐴hole 𝐴pipe⁄ ), which represent the vertical and horizontal axis of the regime diagram in Figure 2: 

 
6 HSE’s method for modelling releases from pipelines assumes prescribed hole sizes, and it is not necessary to include a 

smooth transition for the coefficient of discharge between the full-bore rupture and hole scenario, as the hole will always be 

sufficiently small to justify using 𝑐𝑑 = 0.6.   
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𝑃0
∗ = 1 + 𝐴hole

∗
𝑐sound

𝑃sat
𝐺hole,liq.unchoked = 1 + 𝜔𝐴hole

∗  (16) 

where the slope of the line in the regime diagram that delineates unchoked flow is the parameter ω, which is given by: 

𝜔 =
𝑐sound

𝑃sat
𝐺hole,liq.unchoked =

𝑐sound

𝑃sat
𝑐d√2(𝑃sat − 𝑃atm)𝜌d. (17) 

In the above equation, the saturation vapour pressure and the liquid density are evaluated at the initial temperature (𝑇0).  

3.3.3 Further discussion of the Regime Diagram 

The regime diagram shown in Figure 2  provides an intuitive understanding of the decompression process. It is now possible 

to formally define the transitions between the different zones. Specifically, (9) corresponds to the transition between saturated 

choked outflow and rarefaction wave limited flow, and (16) corresponds to the transition between rarefaction wave limited 

flow and pressure liquefied flow. A more thorough interpretation of these zones is now possible, which is presented below.  

Unchoked flow  

The top left (coloured brown) in Figure 2 corresponds to case where the initial pressure is sufficiently high to guarantee an 

incompressible liquid outflow. This is defined by the condition: 

P0
∗ ≥ 1 + 𝜔𝐴hole

∗  (18) 

Within this region, the initial mass flow rate is calculated using Bernoulli’s equation for unchoked liquid flow, i.e. 

𝑚̇0 = 𝑐d𝐴hole√2(𝑃d − 𝑃atm)𝜌d (19) 

Where the pressure downstream of the rarefaction wave (𝑃d) is calculated by numerically solving (12). The physical 

interpretation of this region is the situation where the initial expansion of the liquid as the rarefaction wave passes up the 

pipeline provides more than enough liquid to maintain an unchoked release.  

Choked flow  

The lower right region (coloured in light blue) in Figure 2 is where the initial pressure is close to the saturation vapour pressure 

and/or the hole is large. This is defined by the equation: 

1 < 𝑃0
∗ ≤ 1 + Ω𝐴hole

∗ . (20) 

Within this region, the initial mass flow rate is calculated using the equation for choked flow at the saturation vapour pressure 

(3). 

The initial expansion of the liquid as the rarefaction wave passes up the pipeline does not provide sufficient liquid to maintain 

unchoked flow through the large orifice, the pressure falls practically instantaneously to the saturation vapour pressure, and 

the discharge rate is then governed by the choked flow rate for a saturated liquid. 

Rarefaction Wave Limited Outflow - Transitional Flow  

Between the two regions defined above is a third region (coloured in green in the regime diagram), defined by the criteria: 

1 + Ω𝐴hole
∗ < 𝑃0

∗ < 1 + ω𝐴hole
∗ . (21) 

Within this transitional region, for a given pressure, the mass flow rate is assumed to remain constant as the hole size varies 

between the upper and lower bounding cases of choked and unchoked flow. The initial mass flow rate is given by the 

rarefaction mass flow rate:  

𝑚̇0 = 𝐴pipe𝑐sound(𝜌0 − 𝜌sat) (22) 

where the saturated liquid density, 𝜌sat, is evaluated at the initial temperature, 𝑇0. 

 

Figure 3 and Figure 4 qualitatively show the mass flow rate and mass flux density behaviour corresponding to a hypothetical 

substance for cases on the blue and yellow dashed lines in Figure 2. In both plots, the mass flow rate is plotted in purple using 

the left ordinate axis, and the mass fluid density is plotted in red using the right ordinate axis.  

Figure 3 show the variation of the mass flow rate and mass flux density for varying the hole area, for cases where initial 

pressure that is nominally twice the saturated vapour pressure (see the horizontal dashed blue line in Figure 2). As the hole 
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size decreases from a full-bore rupture, Figure 3 shows how the outflow is initially saturated and choked with a uniform mass 

flux density, corresponding to a linearly decreasing mass flow rate, down to the beginning of the transition zone at 𝐴hole
∗  =

𝛺−1.  In the transition zone, 𝜔−1 < 𝐴hole
∗ < 𝛺−1, the mass flow rate is constant, but the mass flux density (red line) increases 

to the unchoked liquid outflow value at 𝐴hole
∗ = 𝜔−1. For 𝐴hole

∗ < 𝜔−1, the mass flow rate continues to decrease as the mass 

flux density increases to the value corresponding to an equivalent release from a vessel at the initial pipeline pressure. The 

important point to note is that there is no step change in the initial mass flow rate.  

 

Figure 3 Illustration of the mass flow rate 𝑚̇0 (purple line/left ordinate axis)  and mass flux density 𝐺hole  (red line/right 

ordinate axis) versus the dimensionless hole-area (𝐴hole
∗  ), for 𝑃0

∗ = 2 (i.e. representing the mass flow rate/mass flux density 

behaviour along the horizontal blue dashed line in Figure 2). 

To further illustrate the behaviour shown in the regime diagram, Figure 4 shows the change in mass flow rate and mass flux 

density as the pressure is increased whilst the hole size is held constant (a hole that is 1/10th of the pipe cross sectional area - 

the vertical dashed yellow line shown in Figure 2). In this case, as the pressure increases from saturation, there is initially no 

change in the mass flow rate until the beginning of the transition zone, after which the mass flow rate increases monotonically 

with pressure, which continues through both the transition zone and the unchoked liquid flow zone.  

Figure 4: Schematic diagram qualitatively indicating mass flow rate 𝑚0̇  (purple line/left ordinate axis) and mass flux 

density 𝐺ℎ (red line/right ordinate axis) versus the dimensionless pressure 𝑃0
∗, for 𝐴hole

∗ = 0.1 (i.e. the vertical yellow line 

at 𝐴hole
∗ = 0.1 in Figure 2). 

4 The Pressurised Liquid Flow Solution.  

4.1 Introduction 
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This section describes the theoretical foundations of the expanding liquid flow model (zone 1) in more detail. In the following, 

the terminology “compressed” or “pressurised” refer to a fluid that is stored at a pressure that exceeds its saturation vapour 

pressure, and stored at a temperature exceeding its boiling temperature at atmospheric pressure. The objective of this section 

is to derive the equations describing the length and mass of the single phase, expanding pressurised liquid zone.   

Assumptions 

1. Isothermal decompression 

2. Approximate linear equation of state for compressed liquid 

3. Uniform pressure gradient in expanding zone 

4. Isobaric process linking conditions immediately upstream of the orifice to conditions on the orifice plane.  

Isothermal Decompression 

The first assumption is that the decompression of the fluid from its initial pressurised state to the saturation vapour pressure is 

isothermal, i.e. the temperature remains constant at the initial value, 𝑇0, as the pressure changes from its initial value, 𝑃0, to 

the saturation pressure 𝑃𝑠𝑎𝑡. 

This assumption of isothermal decompression is also adopted in the PipeBreak model in PHAST, DNV (2011). A real fluid 

will likely decompress with constant entropy and lead to some cooling. The magnitude of the temperature change is uncertain. 

Previous validation of the PipeBreak model, with this assumption of isothermal decompression, against the Isle of Grain data 

(Richardson & Saville, 1996) showed that temperature after the decompression to saturation was relatively unchanged. 

Assuming isothermal decompression makes the derivation of the new model considerably easier. The effect of isothermal 

decompression is likely to be most significant near critical conditions. However, the decompression is usually associated with 

a temperature drop, which causes a lower choked mass flux density. It is therefore arguable that assuming isothermal 

decompression is conservative.  

Approximate Equation of State 

The second assumption relates to assuming a simplified equation of state for the compressible liquid. Since it is assumed that 

decompression of the liquid is isothermal, the liquid density is required as a function of pressure. The density of a liquid 

generally changes only slightly over a large pressure range. The third assumption in deriving the new model is that the density 

varies linearly with pressure. Figure 5 plots the density against pressure for propane at 5°C between the saturated vapour 

pressure and 100 bar using Reid et al. (1987) (specifically the Thomson extension of the Hankinson-Brobst-Thomson (HBT) 

method7 for compressed liquids), and demonstrates that the  interpolation between endpoints is an acceptable approximation.   

 

Figure 5 Density of propane at 5°C calculated using the Hankinson-Brobst-Thomson method and the linear approximation. 

The liquid density is therefore approximated as a function of pressure via: 

𝜌 = 𝜌𝑠𝑎𝑡 +
𝜌0 − 𝜌𝑠𝑎𝑡

𝑃0 − 𝑃𝑠𝑎𝑡

(𝑃 − 𝑃𝑠𝑎𝑡). (23) 

where the densities, 𝜌0 and 𝜌sat, are calculated using an appropriate equation of state.  

 
7 The HBT method is valid for temperatures up to 95% of the value of the critical temperature (𝑇 𝑇crit⁄ < 0.95). For cases 

that are closer to the critical point, PiRRaM fixes 𝑇 at 0.95𝑇crit (Reid et al., 1987). 
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Uniform Pressure Gradient 

In the zone of pressurised liquid flow, the pressure is a linear function of distance along the pipe (uniform pressure gradient). 

This is a direct consequence of the fluid being weakly compressible, and the mass flux density being uniform in moving 

sections of the pipe. The consequence is that the density varies linearly between the upstream and downstream ends of the 

compressed liquid zone within the pipeline. This allows the mass in the compressed pure liquid zone of the pipe to be 

calculated.  

Exit Pressure and Holes 

This model applies to a specific case corresponding to saturated choked flow through the orifice. As such, the exit pressure is 

always saturated, and the pipe mass flux density is found by assuming a mass conserving, isobaric and isothermal process 

linking the flow at the pipe cross sectional area to the flow on the orifice plane.  

4.2 Derivation 

4.2.1 Length of Expanding Liquid Zone 

Assuming quasi-steady flow (i.e. omitting time derivatives and also convective acceleration ), the momentum conservation 

equation becomes (Webber et al., 1999):  

𝑑𝑃

𝑑𝑥
= −2𝑓

𝐺𝑧1|𝐺𝑧1|

𝐷𝜌sat
. (24) 

where: 

• 𝑃 is the pressure (Pa) 

• 𝑥 is the axial distance along the pipe (m) 

• 𝑓 = (4log10
3.7𝐷

𝜖
 )

−2
 is the Fanning friction calculated using the Haaland (1983) correlation (-) 

• 𝜖 is the pipe surface roughness8 (m)  

• 𝜌sat is the saturated liquid density9 (kg m−3) 

• 𝐷 is the diameter of the pipe (m) 

• 𝐺𝑧1 =
𝐴hole

𝐴pipe
 𝐺hole is the mass flux density in the expanding liquid zone (kg m−2𝑠−1)s−1 

The mass flux density, 𝐺hole, is calculated using the rarefaction balancing method. Integrating (24) over the expanding liquid 

region for a right to left flow gives the following equation for the length of the expanding liquid (𝐿𝑧1) zone: 

𝐿𝑧1 =
𝐷𝜌sat(𝑃0 − 𝑃sat)

2𝑓𝐺z1
2  (25) 

4.2.2 Mass of Pressurised Liquid in Zone 1 

The mass of pressurised liquid in zone 1, 𝑀𝑧1, per unit cross-sectional area of the pipeline, 𝐴pipe, is calculated by integrating 

the density along the pipe: 

𝑀z1

𝐴pipe
= ∫ 𝜌

𝑥0

𝑥sat

d𝑥 (26) 

between positions 𝑥sat = 0 and 𝑥0 = 𝐿z1,  where 𝑥 (m) is the axial distance along the pipe from the orifice. The pressure 

gradient is assumed to be uniform in the expanding liquid zone (liquid flow assumption 3), the consequence of which is that 

the density varies linearly along the pipe i.e. 

 𝜌 = 𝜌𝑠𝑎𝑡 +
𝜌0 − 𝜌𝑠𝑎𝑡

𝑃0 − 𝑃𝑠𝑎𝑡

(𝑃 − 𝑃𝑠𝑎𝑡) (27) 

 
8 Surface roughness is typically taken to be 𝜖 = 4.5 × 10−5 m. 

9 The expanding zone length calculation is not sensitive to slight variations in the liquid density, and the saturated liquid 

density is chosen arbitrarily.  
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where (𝑥0 − 𝑥sat) = 𝐿𝑧1 in the above expression is the length of zone 1. The equation for the mass per unit area then 

becomes: 

𝑀𝑧1

𝐴pipe
= ∫ 𝜌sat + 𝑥

(𝜌0 − 𝜌sat)

𝐿𝑧1

𝐿z1

0

d𝑥 (28) 

which integrates to:  

𝑀z1

𝐴pipe
= [𝜌sat𝑥 +

𝑥2

2

(𝜌0 − 𝜌sat)

𝐿z1
]

0

𝐿𝑧1

. (29) 

which evaluates to:  

𝑀𝑧1

𝐴pipe
= 𝐿z1

𝜌0 + 𝜌sat

2
 (30) 

The mass required to be lost in zone 1 to reach saturated conditions (Δ𝑀𝐿pipe>𝐿z1
) is therefore: 

Δ𝑀𝐿pipe>𝐿z1
= 𝑀0 − 𝑀sat = 𝐴pipe𝐿z1 (𝜌0 −

𝜌0 + 𝜌sat

2
) = 𝐴pipe𝐿z1 (

𝜌0 − 𝜌sat

2
) (31) 

4.2.3 Upstream Conditions  

When calculating 𝐿𝑧1 it is possible that the length of pipe required to drop the pressure from 𝑃0 to 𝑃sat(𝑇0) for the given 

𝐺z1, might exceed the available length of pipe (𝐿pipe < 𝐿z1). In this scenario, the upstream pressure will fall beneath the initial 

value. To accurately calculate the inventory mass, the upstream pressure needs to be calculated.  

If zone 1 occupies the whole length of the pipeline and 𝑃u is the pressure in the upstream (closed) end of the pipeline, then the 

momentum equation is rearranged to find the pressure, Pu, at the sealed upstream end of the pipe: 

𝑃𝑢 = 𝑃𝑠𝑎𝑡 +
2𝑓𝐿pipe𝐺z1

2

𝐷𝜌sat
 (32) 

Using equation (27) the upstream density is therefore: 

𝜌𝑢 = 𝜌𝑠𝑎𝑡 +
𝜌0 − 𝜌𝑠𝑎𝑡

𝑃0 − 𝑃𝑠𝑎𝑡

2𝑓𝐿pipe𝐺z1
2

𝐷𝜌sat
 (33) 

4.2.4 Mass in the Expanding Liquid Zone 

The mass in zone 1 is calculated similarly to (29) from:  

𝑀𝑧1

𝐴pipe
= [𝜌sat𝑥 +

𝑥2

2

(𝜌u − 𝜌sat)

𝐿pipe
]

0

𝐿pipe

= 𝐿pipe

𝜌u + 𝜌sat

2
 (34) 

where 𝜌𝑢 is the density calculated at the upstream pressure 𝑃𝑢. The mass required to be lost to reach saturated conditions 

(Δ𝑀𝐿𝑧1>𝐿𝑝𝑖𝑝𝑒
) is therefore: 

Δ𝑀𝐿𝑧1>𝐿pipe
= 𝑀0 − 𝑀sat = 𝐴pipe𝐿pipe (𝜌0 −

𝜌u + 𝜌sat

2
) (35) 

Applying the relationship for the upstream density (31), the equation for Δ𝑀𝐿1𝑧>𝐿𝑝𝑖𝑝𝑒
 is𝑀𝐿1𝑧1>𝐿𝑝𝑖𝑝𝑒

 is:  

Δ𝑀𝐿𝑧1>𝐿𝑝𝑖𝑝𝑒
= 𝐴pipe𝐿pipe (𝜌0 − 𝜌𝑠𝑎𝑡 −

𝜌0 − 𝜌𝑠𝑎𝑡

𝑃0 − 𝑃𝑠𝑎𝑡

𝑓𝐿pipe𝐺z1
2

𝐷𝜌sat
) (36) 
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4.3 Discussion 

This method described above is equivalent to the PiRRaM approach and has been included here for brevity. Equations (31) 

and (36) describe the amount of liquid necessary to be lost from the pipe for there to be a hypothetical expanding liquid zone, 

with a uniform pressure gradient along the pipe, dropping the pressure from the initial pressure to saturation.  The two equations 

are necessary to describe the case where the expanding liquid zone exceeds the length of the pipe, and the case where the 

expanding liquid zone is less than the length of pipe. The latter case is novel in that, for a sufficiently long pipe, the initial 

mass flow rate decay is independent of the pipe length [see, (31)]. Moreover, the amount of mass required to be lost from the 

pipe to reach saturated conditions depends on the mass flow rate. Full-bore ruptures require only a small amount of mass to be 

removed from the pipe, whereas small holes need significantly more. The difference between equations (31) and (36) could 

be interpreted as when the liquid depressurisation can be treated as a pipe or a vessel respectively.  

5 The Interpolation Method 

To summarise, the initial mass flow rate (𝑚̇0 = 𝐴hole𝐺0) is calculated using the rarefaction balancing method described in 

Section 3. The mass flow rate at the beginning of saturated flow (𝑚̇sat  = 𝐴holeGh,sat.choked ) is given by the PipeBreak choked 

saturated liquid mass flow rate calculation. The mass loss (Δ𝑀) required to begin saturated flow is given by the equations (31) 

and (36) for the cases where the expanding zone is less (Δ𝑀 = Δ𝑀𝐿pipe>𝐿1z
), and greater (Δ𝑀 = Δ𝑀𝐿z1>𝐿pipe

) than the pipe 

length respectively. To bridge the gap between the pressurised and saturated flow conditions interpolation is used.  

PiRRaM assumes a method based upon the linear interpolation of 𝑚̇−1. The reasoning for this is that it is consistent with the 

underlying method used to propagate the solution, and the resulting interpolation places a lesser weighting on high mass flow 

rates. Arguably, there are infinitely many interpolations which are all equally valid. The PiRRaM approach is a pragmatic 

method which provides acceptable results, though for full bore ruptures and large holes it can predict that the elements of fluid 

have started to move at times earlier than a sound wave may have propagated there. This is not considered to be a significant 

deficiency, as it enables a smooth and consistent transition between the pressurised and saturated states across the range of 

modelled hole sizes. This approach also enables a complete solution to be derived, without the need for additional clarification 

or modelling decisions to be made (i.e. designed switches in model behaviour that often have unforeseen consequences).  

Other interpolation methods were tested, but achieving a consistent well-behaved interpolation is nontrivial . PiRRaM uses 

the trapezoidal integration method to estimate the time step integral between conditions at step 𝑖 and 𝑖 + 1: 

𝑡𝑖+1 − 𝑡𝑖 = − ∫
1

𝑚̇
𝑑𝑀

𝑀𝑖+1

𝑀𝑖

= −
1

2
(

1

𝑚̇𝑖+1
+

1

𝑚̇𝑖
) (𝑀𝑖+1 − 𝑀𝑖) (37) 

This approach implicitly assumes a linear form for 𝑚̇−1 over the interval of integration and is used as a motivation for a 

consistent interpolation function that enables the mass flow rate and pipe inventory to be calculated explicitly. The aim of this 

derivation is to find 𝑡, 𝑀(𝑡) and 𝑚̇(𝑡) in the interval ሾ𝑡𝑖 , 𝑡𝑖+1ሿ, that are defined by 𝑚̇𝑖 , 𝑀𝑖 , 𝑚̇𝑖+1 and 𝑀𝑖+1 (i.e. the quantities at 

each side of the interval) and that also satisfy: 

𝑚̇(𝑡) = −
𝑑𝑀(𝑡)

𝑑𝑡
 (38) 

For a scenario where 𝑀0, 𝑀sat, 𝑚̇0  , 𝑚̇sat and 𝑡0 = 0 are known, 𝑡sat is calculated from (37) as: 

𝑡sat =
1

2
(

1

𝑚̇0
+

1

𝑚̇sat
) (𝑀0 − 𝑀sat) (39) 

The interpolation function for the mass 𝑀(𝑡) and mass flow rate 𝑚̇(𝑡) in the interval ሾ0, 𝑡satሿ are given by: 

𝑀(𝑡) =
−𝑏 ± √𝑏2 − 4𝑎𝑐(𝑡)

2𝑎
 and 𝑚̇(𝑡) = ሾ𝑚̇0

−1 + 𝜓(𝑀(𝑡) − 𝑀0)ሿ−1, (40) 

where the variables 𝑎, 𝑏 and 𝑐(𝑡) are found by evaluating the following expressions: 

𝑎 =
1

2
ψ, 𝑏 = (𝑚̇0

−1 − ψ𝑀0)  𝑐(𝑡) = 𝑡 − 𝑡0 − 𝑎𝑀0
2 − 𝑏𝑀0, and 𝜓 =

𝑚̇sat
−1 −𝑚̇0

−1

𝑀sat−𝑀0
 (41) 

This is valid provided that 𝑚̇0 ≠ 𝑚̇sat. If 𝑚̇0 = 𝑚̇sat then  𝑚̇(𝑡) = 𝑚̇sat for t between 0 s and 𝑡sat, which is generally expected 

for full-bore ruptures. 

Ideally, an analytical solution could be used to fully characterise the transition between the frictionless pressurised liquid flow 

and the later friction dominated saturated flow. Unfortunately, an analytical solution to the early-stage evolution has not been 

forthcoming, and further work would be required to address this point. The approach adopted in PiRRaM is therefore a 

consistent and pragmatic solution which allows the solutions to transition between frictionless and friction flow in a simplified 
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manner. The approach has three features which make it well suited for its intended purpose. Firstly, for a sufficiently large 

pipe, the time corresponding to the start of saturated flow (𝑡sat) is independent of pipe length. Secondly, the loss mass required 

mass to reach saturated flow (Δ𝑀) depends on the hole size, with smaller holes requiring more mass than large holes and full-

bore ruptures. Thirdly, the model is robust and easily implemented without the need for complex numerical techniques. To 

summarise, the framework is applicable from full-bore rupture releases down to small hole releases, without the need to switch 

to either a vessel type model, or fundamentally change the structure of the model for small holes.  

6 Model Sensitivity Testing 

The initial release dynamics should be insensitive to the pipe length if it is sufficiently long. This is because a rarefaction wave 

must propagate the whole length of the pipe and back to affect the mass release rate. Figure 6 shows the PiRRaM prediction 

for the mass flow rate during the initial decompression of a full-bore rupture for the case of a 100 m (blue line), 200 m (orange 

line), 500 m (grey line) and 1000 km long pipeline (green dashed line). Also highlighted is the initial mass flow rate (𝑚̇0), and 

mass flow rate at the beginning of the two-phase flow (𝑚̇sat). The decompressions are characterised by an initially linear decay 

over the initial 200 ms to 400 ms due to the liquid expansion until saturated conditions are met (with the mass flow rate 

dropping from 𝑚̇0 to 𝑚̇sat),  followed by a much steeper decay once the saturated two-phase flow ensues. The initial decay to 

saturated conditions is modelled using the interpolation method, followed by the two-phase model.  

The length of the expanding liquid zone is approximately 270 m, in which case the initial decompression (between 0 and 400 

ms with the mass flow rate dropping from 𝑚̇0 to 𝑚̇sat) becomes independent of the pipe length when the pipe length exceeds 

this value. Whilst pipe length affects the initial decompression for pipe lengths less than 270 m , this is acceptable given that 

the predictions are insensitive to pipe length for scenarios of more practical interest.   

 

Figure 6 Plot showing the sensitivity of the initial duration of the transient decompression to pipe length. The interpolation 

is used to predict the mass flow rate variation between 𝑚̇0 ≈ 500 kg/s and 𝑚̇sat ≈ 475 kg/s. 

7 Validation 

7.1 Rarefaction Balancing Method 

The rarefaction balancing method can be validated using CO2PipeTransData (Armstong & Allason, 2014). Specifically, the 

pressure immediately upstream of the orifice plane can be used to examine the accuracy of the rarefaction balancing method. 

Table 1 shows a comparison of the pressures measured 25 cm upstream of the hole in the CO2PipeTrans experiments and the 

predictions of PiRRaM for the same location. PiRRaM matches the general trend and makes reasonable estimates of the 

measured values. Given that PiRRaM assumes isothermal decompression, an approximate linearised equation of state, and 

uses a very simple approach to quantify the complex release dynamics, the level of agreement is acceptable.  
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Table 1: Comparison of measured pressure 25 cm upstream of the hole and the prediction from PiRRaM 

Trial 
Relative hole 

size 

Measured Pressure 

(bar) 

PiRRaM Pressure 

(bar) 

Test 6 4% 83.7 89.6 

Test 5 16% 52.0 64.5 

Test 7 28% 40.2 57.5 

Test 3 45% 30.5 36.0 

Test 4 100% 23.0 37.9 

7.2 Interpolation method 

Depending on the hole size, the flow in the earliest stages of these releases can be dominated by a rarefaction wave propagation. 

Capturing the time taken to reach saturated conditions whilst providing some insight into the likely transient behaviour during 

this period was a key requirement for PiRRaM.  

The CO2PipeTrans experiments provide an excellent dataset to test the suitability of the interpolation method. Figure 7 shows 

comparisons between experimental data (black diamonds) and PiRRaM predictions (green lines) for the pressure10 

immediately upstream of the orifice. For brevity, only phase 3 tests 4, 5, and 6, corresponding to FBR, 16% and 4% holes, are 

considered. The experimental data clearly shows a variety of different behaviours.  

The plots show a steplike pressure decay for the smallest hole size (Figure 7, right), where the orifice pressure appears to jump 

between well-defined values before reaching the saturation pressure (≈ 32 bar) at 2.5 s after the pipe is opened. In contrast, in 

the full-bore rupture scenario (Figure 7, left) the decompression to saturated conditions (≈ 24 bar) near the opening plane is 

almost instantaneous. The middle hole size case (Figure 7, middle), shows only a single plateau in the pressure (≈ 46 bar) 

before reaching saturated conditions (≈ 32 bar at 0.9 s).  

In the full-bore rupture case (Figure 7, left), saturated flow is predicted to be delayed by 0.05 s. In the 20% (Figure 7, middle)  

and 4% hole (Figure 7, right) scenarios, the predicted delay to saturated flow is 1.5 s and 6.4 s respectively. In each case the 

predicted time to reach saturated conditions is highlighted with the orange line. Whilst by no means perfect, PiRRaM can be 

seen to qualitatively capture the early transient decay of the pressure with an acceptable degree of accuracy. One of the 

requirements of the PiRRaM model is to accurately predict the decompression during the initial 30 s of the release.     

 
Figure 7 Comparison of the PiRRaM predictions (green lines) shown in comparison to the pressure decay measured 

immediately upstream of the orifice (black diamonds) for CO2PipeTrans Phase 3 Test 4 (FBR, left plot), Test 5 (20% hole, 

middle plot), and Test 6 (4% hole, right plot). The orange line indicates the time at which the saturated solution begins.  

 

10 For a given mass flow rate, the pressure is estimated finding 𝑃d satisfying 𝐴hole𝑐d√2𝜌liq(𝑃d − 𝑃atm) = 𝑚̇. If 𝑃d is 

estimated to be smaller than 𝑃sat, then  𝑃d = 𝑃sat.  
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8 Summary 

This paper describes a series of calculations which are used to estimate the mass flow rate during the initial decompression of 

a transportation pipeline containing a pressure liquified fluid. Whilst elements of the early decompression modelling in the 

PiRRaM method are pragmatic approaches, they provide a robust framework upon which to quantify the mass flow rate 

evolution.  

There are various approaches which can be adopted to incorporate pressurised liquid effects into a saturated flow model, and 

several techniques were considered during the development of PiRRaM. One approach which appears to be particularly 

attractive, is to estimate the additional mass, due to the liquid pressurisation effect which is in excess to assuming saturated 

initial condition, and develop a technique through which this can be ejected before the saturated flow model is applied. 

However, this approach is problematic in that the initial release dynamics are then intrinsically coupled to the length of pipe. 

That is, as the length of pipe extends, the time taken to reach saturated conditions grows. In PiRRaM, the mass required to 

transition to the saturated flow solution depends on the hole size, with less mass required to transition for full-bore ruptures 

than for small holes. In this case, the sensitivity of the initial release dynamics to the pipe length disappears for sufficiently 

long pipes. Model sensitivity testing has been performed to demonstrate the insensitivity of the initial release dynamics to pipe 

length for practical scenarios.  

The PiRRaM method has been compared to the initial stages of the CO2PipeTrans experiments. This included comparisons of 

the predicted pressure immediately upstream of the release to the experimentally measured values for different hole sizes, and 

comparison of the initial transient decompression. The comparison demonstrates that the rarefaction balancing technique 

captures the key dynamics occurring at the time of the ruptures, although the accuracy of predictions would likely be improved 

with better equation of state modelling. The interpolation method is shown to be suitable for its intended use in qualitatively 

capturing the key dynamics of characteristics of the initial pressure variation.  

The method described in this paper considers releases from a single pipe. The solution can be easily adapted for symmetrical 

mid-point releases by modifying the rarefaction balancing equation to include an additional factor of two to account for the 

rarefaction wave propagating in opposite directions; choosing a pipe length to be half the actual pipe length; and doubling the 

mass flow rate in the full-bore rupture release case. A summary of the entire calculation, with notes to aid implementation, is 

given in the Appendix.    
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10 Appendix: Summary of Key Parameters and Equations 
The table below provides a summary of the parameters and calculations necessary to evaluate the PiRRaM pressurised liquid 

decompression method. 

Parameter Notes 

𝑇0, 𝑃0 Initial temperature and pressure 

𝐿pipe, 𝐷pipe, 𝐷hole and 𝜖 Pipe characteristics. For a midpoint release, 

𝐿𝑝𝑖𝑝𝑒is chosen to be half the actual pipe length 

𝑃sat Saturated vapour pressure at initial temperature. 

𝜌0(𝑇0, 𝑃0) and 𝜌sat(𝑇0, 𝑃sat) Initial and saturated liquid density . calculated 

using appropriate equation of state assuming 

isothermal liquid decompression 

𝑀0 = 𝐴pipe𝜌0𝐿pipe Initial mass in the pipe 

𝑐d = {
0.6    ℎ𝑜𝑙𝑒𝑠
1        𝐹𝐵𝑅

 Liquid coefficient of discharge. 

𝐺hole,liq.unchoked = 𝑐d√2𝜌sat(𝑃sat − 𝑃atm) Saturated unchoked mass flux density 

𝑐p Liquid specific heat at constant pressure 

𝜙(𝑇0) = 𝑇0

𝑑𝑃

𝑑𝑇
|

0
 

Clausius Clapeyron relationship 

𝐺hole,sat.choked =
𝜙

√𝑇0𝑐p − 𝜙𝜌sat
−1

 
Choked liquid mass flux density 

𝑐sound = √
𝑃0 − 𝑃d

𝜌0 − 𝜌d
 

Liquid sound speed 

𝐺rarefaction = 𝑐sound(𝜌0 − 𝜌d) Rarefaction mass flux density 

𝜔 =
𝑐sound

𝑃sat
𝐺hole,liq.unchoked Criterion defining saturated pressurised liquid 

outflow 

Ω =
𝑐sound

𝑃sat
𝐺hole,sat.choked Criterion defining saturated choked liquid 

outflow 

𝐴hole
∗ = 𝐴hol𝑒𝐴pipe

−1 , and  𝑃0
∗ = 𝑃0𝑃sat

−1 Dimensionless area and pressure 

𝑚0̇ = {

𝐴hole𝐺hole,liq,unchoked                    𝑃0
∗ ≥ 1 + 𝜔𝐴hole

∗

𝐴pipe𝐺rarefaction       1 + ΩAhole
∗  ≤ 𝑃0

∗  < 1𝜔𝐴hole
∗

𝐴hole𝐺hole,sat.choked                         𝑃0
∗ < 1 + ΩAhole

∗

 

Initial mass flow rate calculated using rarefaction 

balancing method. If a midpoint type release is 

considered, then 𝐴pipe needs an additional factor 

of two to account for the rarefaction wave 

propagating in both directions for the hole case, 

or for a FBR, the midpoint release case.  

𝑃𝑑 = {

𝑃∗: 𝐺rarefaction = 𝐴hole
∗  𝐺hole,liq.unchoked   𝑃0

∗ ≥ 1 + 𝜔𝐴hole
∗

𝑃sat                                           1 + Ω𝐴hole
∗  ≤ 𝑃0

∗ < 1 + 𝜔𝐴hole
∗

𝑃sat                                                                       𝑃0
∗ < 1 + Ω𝐴hole

∗

 

Pressure downstream of rarefaction wave 

/immediately upstream of hole or pipe end. If a 

midpoint type release is considered, then 

𝐴pipe needs an additional factor of two to account 

for the rarefaction wave propagating in both 

directions from the hole. 
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Parameter Notes 

𝑚̇sat = 𝐴hole𝐺h,sat.choked Saturated mass flow mass flow rate. For a 

midpoint FBR type release, an additional factor 

of two will be required to account for 

contributions from both sides.   

𝐿𝑧1 =
𝐷pipe𝜌sat(𝑃0 − 𝑃sat)

2𝑓𝐺z1
2  

Length of the expanding liquid zone 

𝑓 = (4log10

3.7𝐷pipe

𝜖
 )

−2

 
Haaland correlation for calculating the Fanning 

friction factor 

Δ𝑀𝐿pipe>𝐿z11z
= 𝐴pipe𝐿z1 (

𝜌0 − 𝜌sat

2
) Mass required to be lost to reach saturated 

conditions when 𝐿pipe > 𝐿z1 

Δ𝑀𝐿𝑧1>𝐿𝑝𝑖𝑝𝑒
= 𝐴pipe𝐿𝑝𝑖𝑝𝑒 (𝜌0 − 𝜌𝑠𝑎𝑡 −

𝜌0 − 𝜌𝑠𝑎𝑡

𝑃0 − 𝑃𝑠𝑎𝑡

𝑓𝐿pipe𝐺z1
2

𝐷𝜌sat
) 

Mass required to be lost to reach saturated 

conditions when 𝐿pipe < 𝐿z1. 

Δ𝑀 = {
Δ𝑀𝐿pipe>𝐿𝑧1

        𝐿pipe > 𝐿z1

Δ𝑀𝐿𝑧1>𝐿𝑝𝑖𝑝𝑒
         𝐿pipe < 𝐿z1

 
Evaluation of mass change 

𝑡sat =
1

2
(

1

𝑚̇0
+

1

𝑚̇sat
) Δ𝑀  

Time at which saturated solution begins 

𝑎 =
1

2
ψ, 𝑏 = (𝑚̇0

−1 − ψ𝑀0), 𝑐(𝑡) = 𝑡 − 𝑡0 − 𝑎𝑀0
2 − 𝑏𝑀0,  

𝑎𝑛𝑑 𝜓 =
𝑚̇sat

−1 − 𝑚̇0
−1

−Δ𝑀
 

Constants for interpolation functions 

𝑀(𝑡) =
−𝑏 ± √𝑏2 − 4𝑎𝑐(𝑡)

2𝑎
  

𝑚̇(𝑡) =
1

𝑚̇0
−1 + 𝜓(𝑀(𝑡) − 𝑀0)

 

Interpolation functions for mass and mass flow 

rate for time between 0 s and 𝑡sat 

 


