Physics-Informed Alfor Robust Decision Making

Gabe Jacobsohn
Senior Engineer, Computational Physics/AI

Silicon Valley Deep Tech Meets Al

We are accelerating the pace of industrial innovation by empowering industries to overcome data and computational challenges, paving the way for robust, real-time decision-making and industrial autonomy at scale.

Best-in-Class Research

We were born from the minds of pioneers and visionaries in Al-augmented computational physics and computational autonomy.

Best-in-Class Product

Our leadership has led innovative product initiatives, creating and delivering high-impact solutions across diverse industries.

Bridging the Simulator-Operations Gap

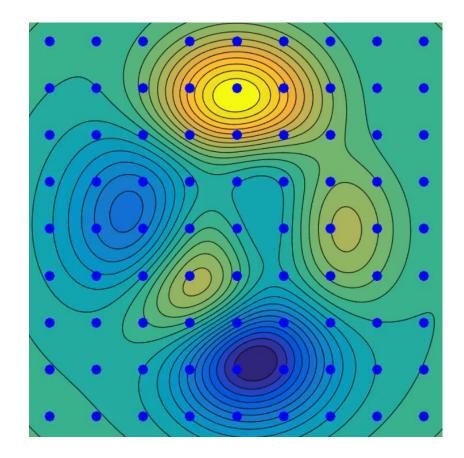
High-fidelity simulation tools are more accurate and widely used but **increasingly computationally expensive.** As sensor coverage grows, quality control improves, emissions standards tighten, and operational **optimization becomes more complex and constrained**.

Challenge:

While we have the predictive capability, we can't access necessary high-fidelity information in an **operations timescale**.

Requirements to bridge the gap:

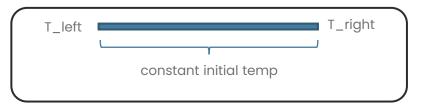
- 1. Hi-fidelity predictions
- 2. Speeds fast enough for thousands of solves in an operations time scale (seconds/minutes)
- 3. Robust optimisation algorithms
- 4. Confidently used without experience in numerical simulation



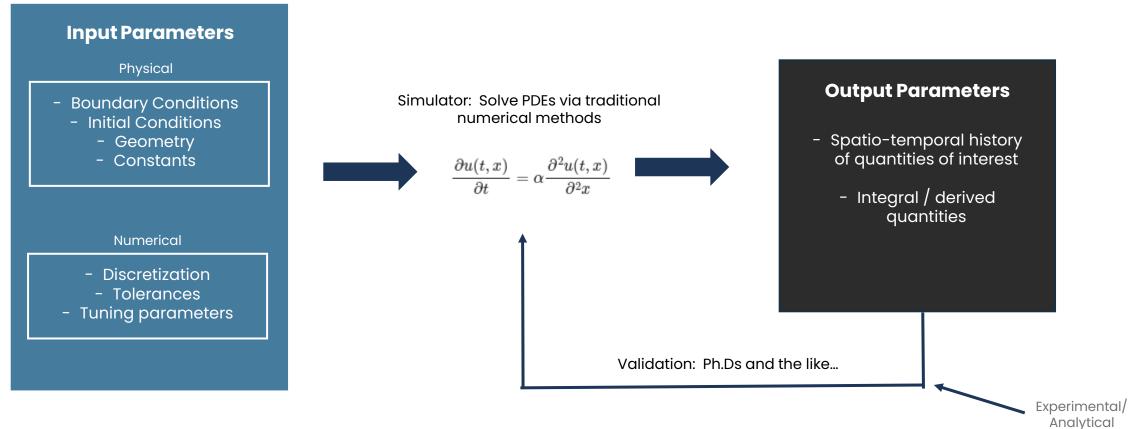
Optimisation is expensive.

Physics-Informed AI

Simulation: The TL;DR



Guiding example: 1D heat transfer in a rod

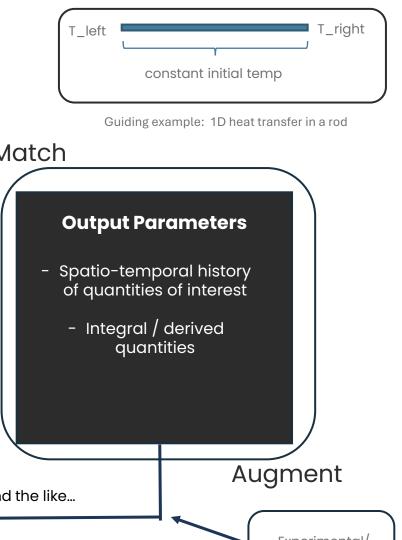


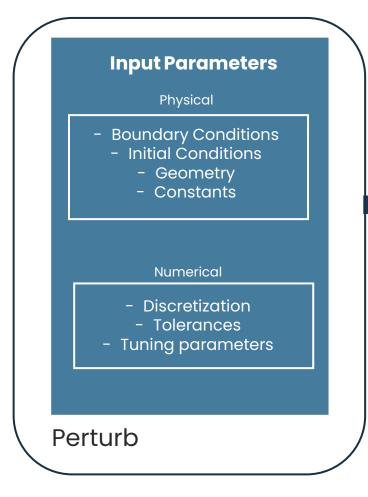
Simulation tools as black box models: Input -> Output mapping based on **known** governing equations

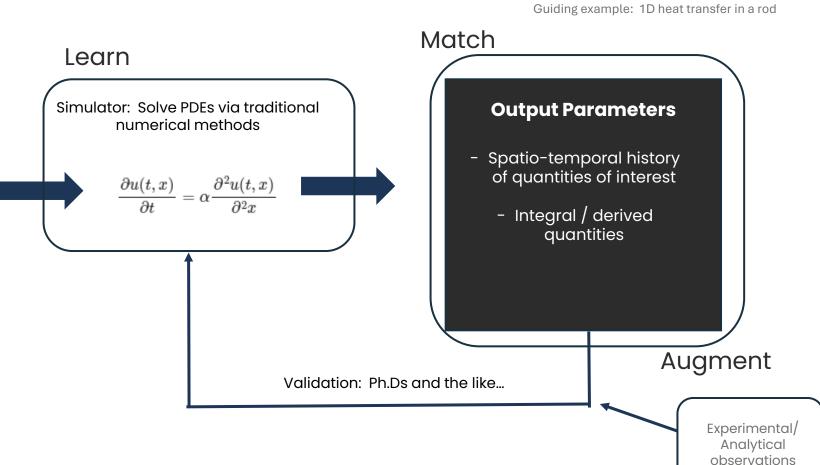
observations

Physics-Informed AI

Simulation: The TL;DR



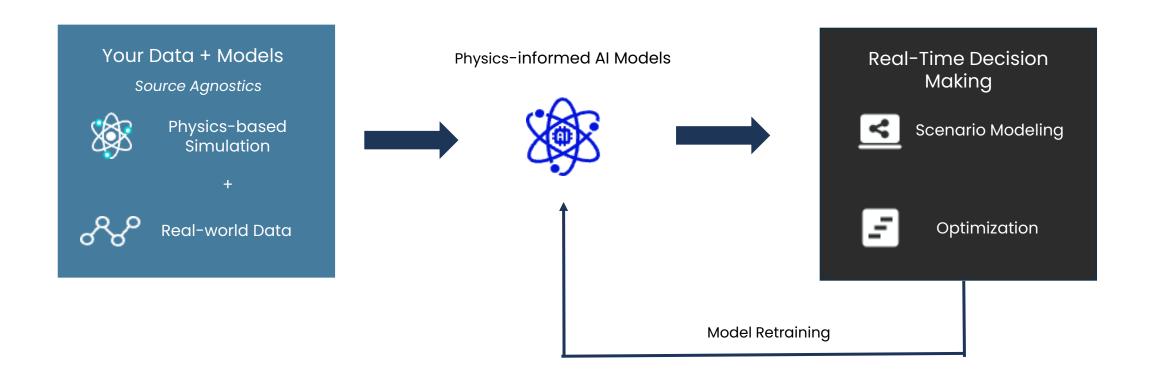




PIAI as black box models: Input -> Output mapping based on **learned** operators

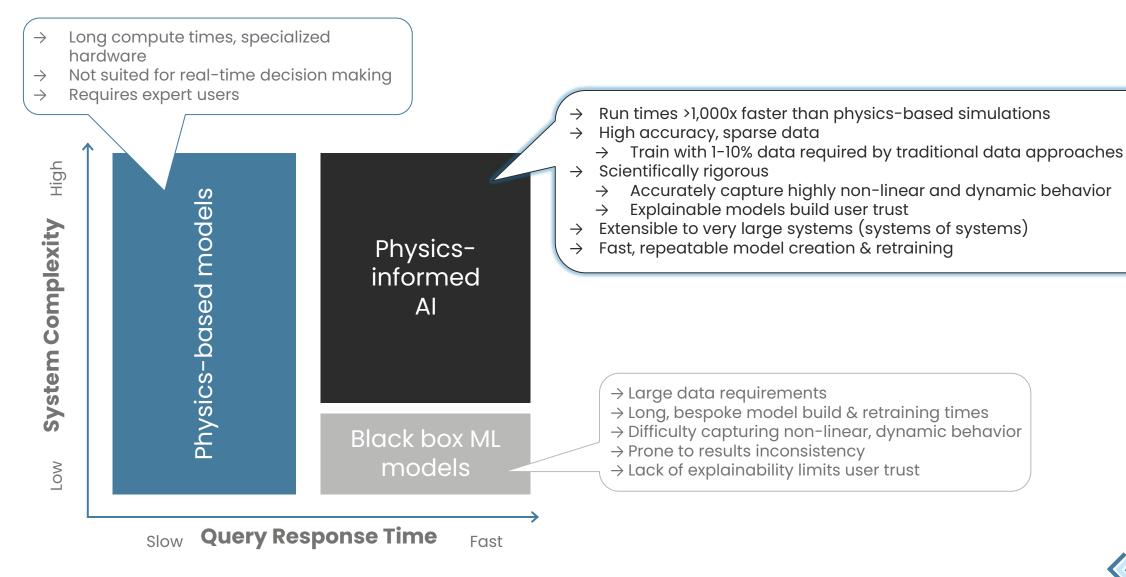
Phyics-Informed AI

Fusing Physics-Based Simulation and Process Data

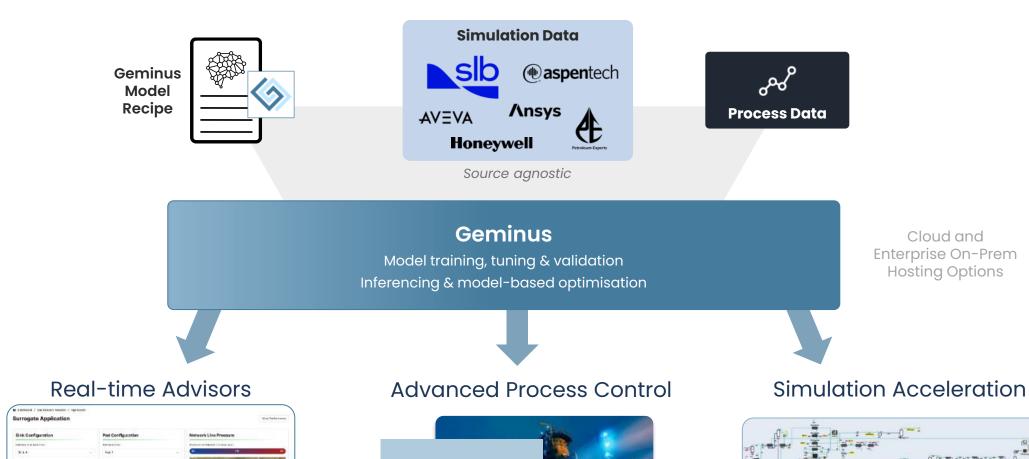


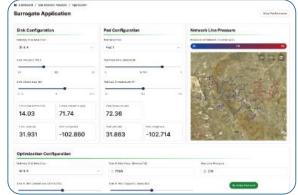
Operationalizes and scales investment in simulation | Accuracy that builds trust | High speed ROI in days, not months

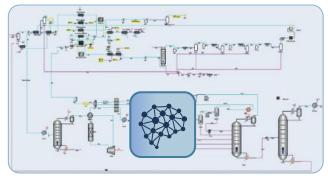
Real-time Intelligence, for Complex Systems, at Scale



Physics-Informed AI Model Generation and Deployment

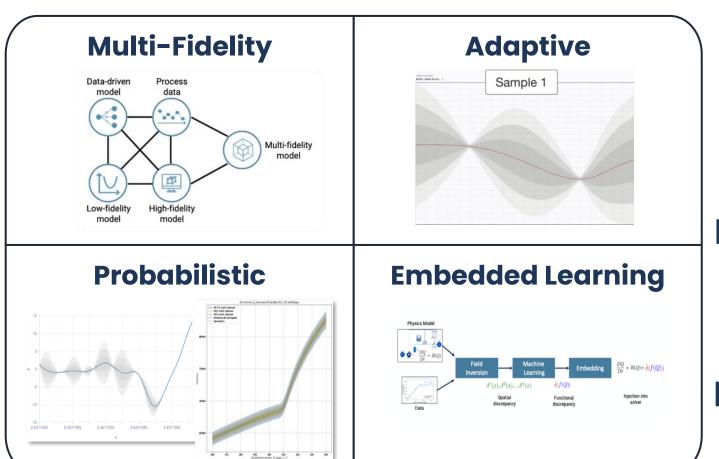






Geminus' Proprietary Technology Delivers Decision Intelligence

Efficient Training, Sparse Data, High Confidence



Recommendations at the speed of real-time operations and critical decision time scales

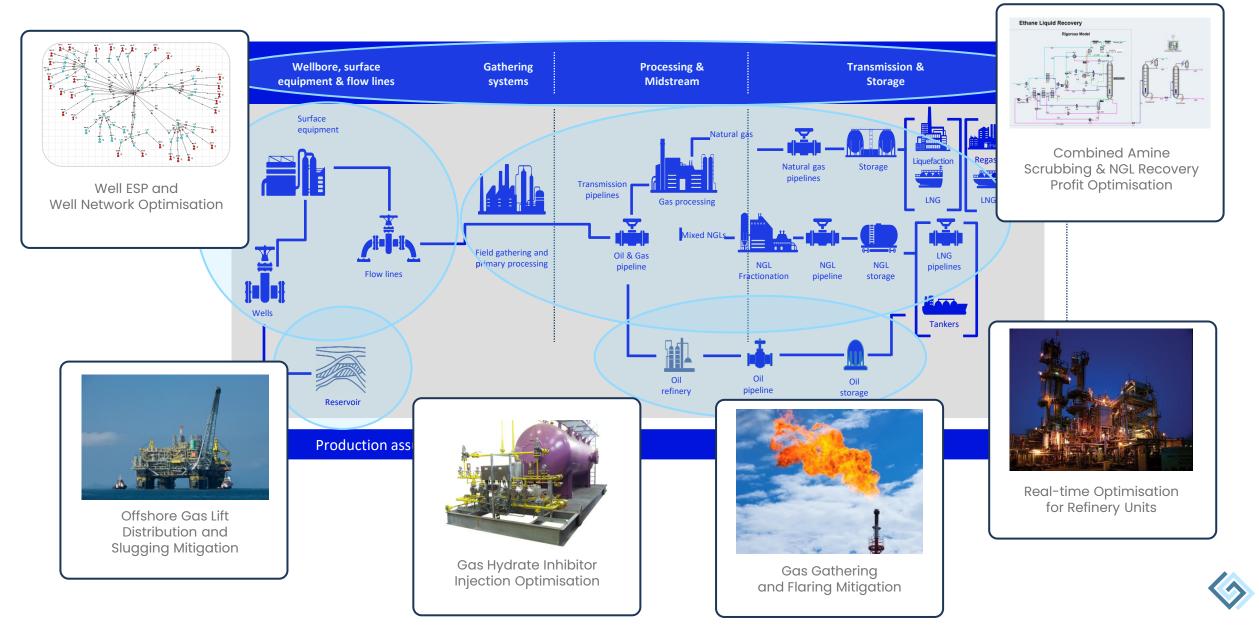
ROBUST

Credible, high-quality,
defensible recommendations
that account for system
uncertainty

SCALABLE

Ultra-fast model creation and deployment, capable of operating across multiple systems at enterprise level

Geminus Use Cases: Across the O&G Value Chain



Challenges Optimising Gas-Producing Well Networks

High complexity exceeds abilities of human operators

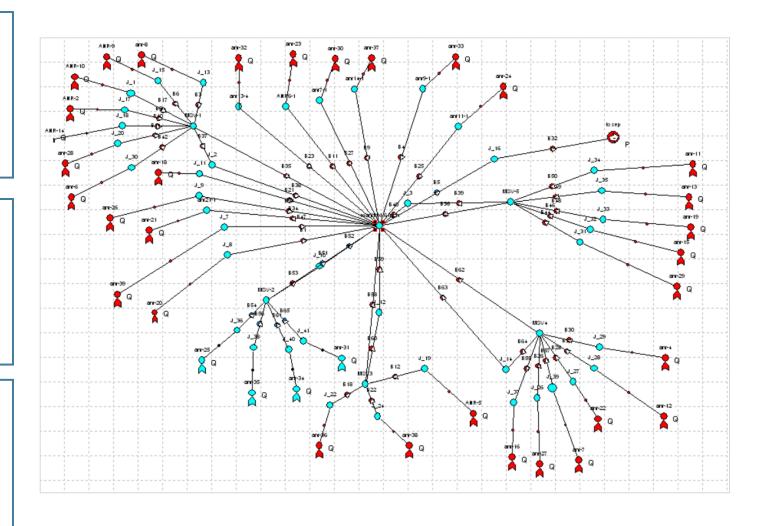
Tens to hundreds of thousands of parameter combinations must be evaluated

Simulation-based optimisation is intractable

Due to computational expense & short time horizons for decision making

Models are difficult to scale and keep evergreen

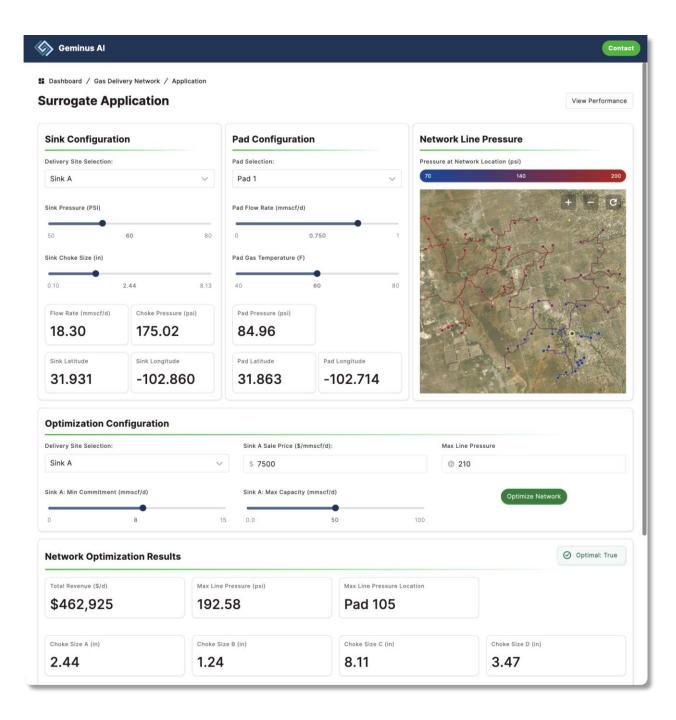
Wells and reservoirs are continually changing

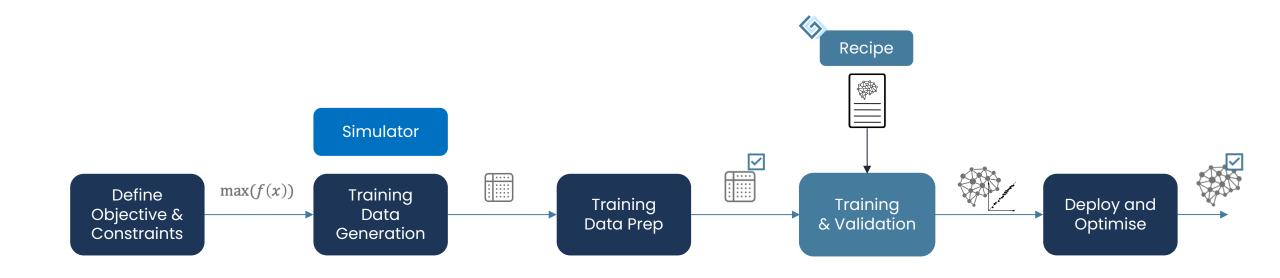


Geminus-Powered Advisor for Well Network Operations

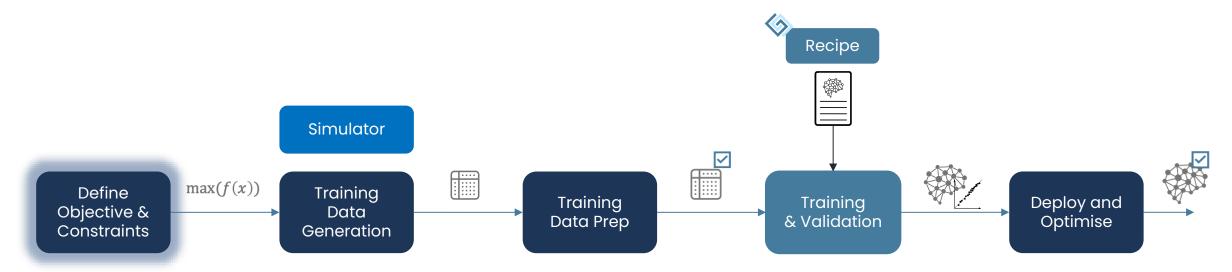
- Intelligent advisor application allows process engineers to evaluate "what-if" scenarios and optimise network productivity in near real-time.
- Under the hood:

 A high-accuracy and fast-executing physics-informed AI surrogate model, derived from detailed Pipesim network model





Sample > Train > Validate > Deploy > Optimise



Simulator

SLB PIPESIM

Network Summary

80 natural gas pads (gas flowrate and temperature BC at each) 4 sinks/compressor stations 4 chokes (1 per sink)

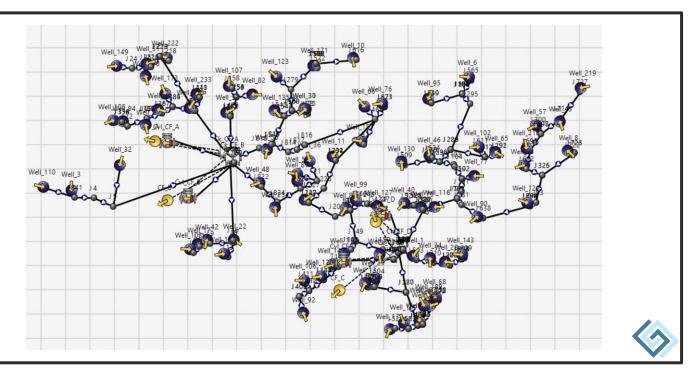
Operational Constraints & Pricing

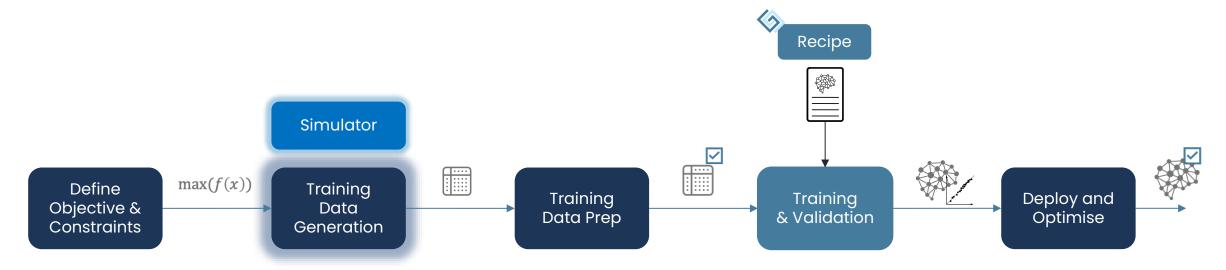
Minimum gas flowrate commitment per delivery point/sink
Maximum gas flow rate capacity per delivery point/sink
Maximum pad/flowline pressure to prevent flaring/damage
Varying purchase price per unit volume at each per delivery point

Objective

Given pad flowrates and selling price per delivery point:

maximize revenue meet sink rate upper/lower constraints meet pressure constraints



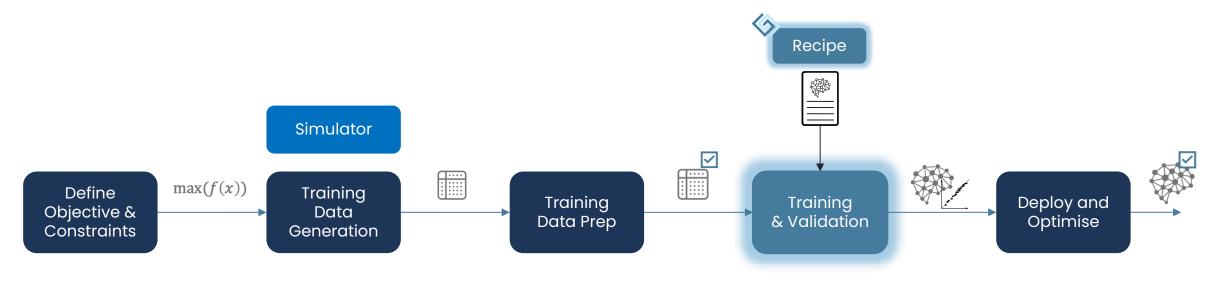


- 1. Construct DOE (Latin Hypercube, N=17,000)
 - o 168 independent variables
 - Gas Flowrate and temperature per pad
 - Choke size and sink pressure per sink
 - o 185 dependent variables
 - Pressure at each pad and max pressure of each flowline
 - Flowrate at each sink
- 2. Execute parallel simulations on shared memory multicore compute hardware
 - o Full training dataset constructed in ~24 hours
 - o 60 seconds / simulation computed in parallel across 12 cores
 - o Readily supported by Pipesim Python Toolkit

Data pipeline to filter and clean data for:

- Outliers
- Simulator errors (e.g. non-convergence)
- etc.

Additional processing to ensure consistent units, column names, etc.

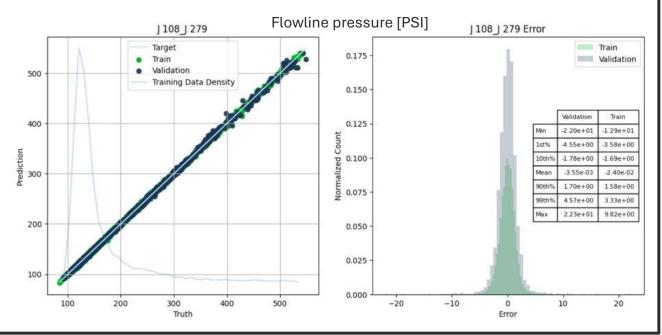


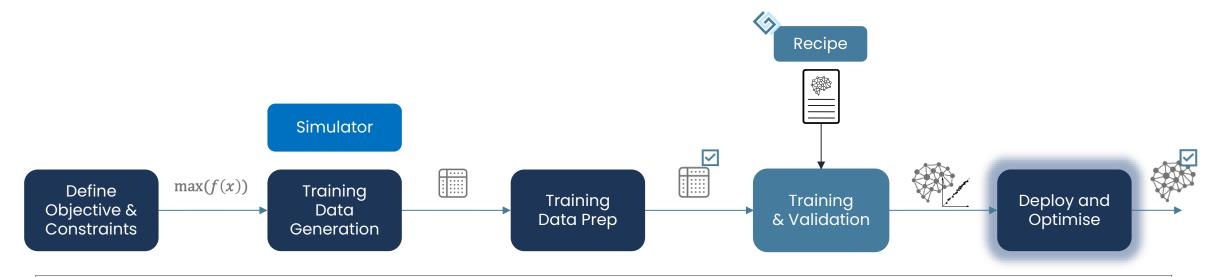
1. Load Geminus recipe for well network model

- Application-specific & repeatable training and validation pipeline
- Optimized deep learning architecture, training, and data pre-processing operations
- Differentiable by design

2. Execute ML training

- GPU accelerated (also compatible w/ CPU)
- ~25 minutes clock time
- 3. Render comprehensive validation reporting across training and withheld validation datasets
 - Per-output R²
 - Accuracy plots
 - Error distributions

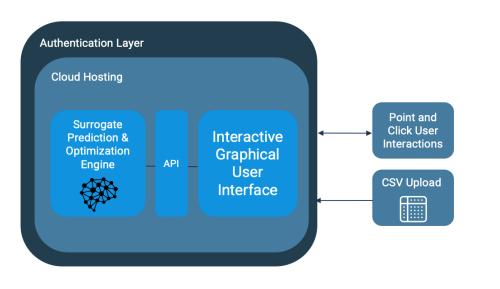


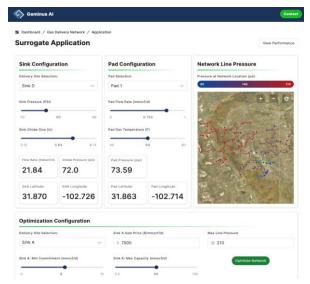


Surrogate model integrated into a robust non-linear constrained optimization framework

Model query time: < 1 ms
Optimisation time: < 3 sec
1000's of rapid forward solves

Export to portable runtime formats including proprietary Geminus Surrogate Runtime (GSR) and ONNX





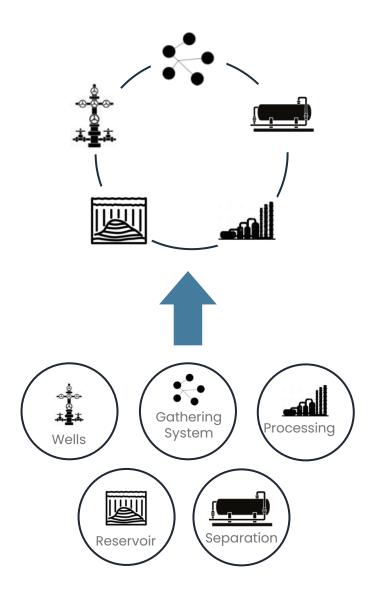
Improving Productivity of Large Well Networks

- Optimised recommendations based on trusted physics

 Maximized productivity unlocks millions in incremental profits. Multiplying return of customer's investment in Pipesim
- Decision-making to meet critical time scales
 Instant model query times enable large-scale optimisation in seconds
- Scalable AI workflow

 Data-efficient, automated training processes handle network topologies with hundreds of wells

Pathway to Systems: Combining Physics-informed AI with Model-based Systems Approaches to Tackle Complexity at Scale



Enables integrated systems-of-models

- Preserves interactions within and between different domains
- Enables real-time optimisation across multiple domains, multiple simulators, and multiple objectives
- Provides path to efficiently scaling high complexity

Physics-informed AI surrogates liberate & democratize domain simulations

Connect with Gabe gabe@geminus.ai

Follow Geminus on Linkedin

Q&A

Visit Geminus.ai

