IMPERIAL

Fabrication of Graphene Oxide Membranes with Controlled Graphitic Domain for Liquid Separation

Ande Fudja Rafryanto **Department of Chemical Engineering, Imperial College London**

Introduction

Amidst the growing emphasis on sustainable energy, bioethanol has emerged as a promising solution. However, the azeotropic point presents a significant challenge in its purification. Conventional methods, such as distillation, are known to be inefficient and energy-intensive [1, 2]. Recent research highlights graphene oxide (GO) membranes as a potential alternative for ethanol upgrading due to their tunable pore sizes. However, their hydrophilic nature makes them highly susceptible to swelling, compromising performance [3]. Therefore, controlling hydrophobicity is critical to prevent swelling. In this study, reduced graphene oxide (rGO), with enhanced stability and selectivity due to its hydrophobic properties, is being explored as a solution [4].

Both GO and rGO membranes exhibit smooth and dense surface structures, as shown in Fig. 1. In terms of wettability, GO is more hydrophilic with a water contact angle (WCA) of 27.65°, while rGO is more hydrophobic with a WCA of 87.29°. Additionally, the combined hydrothermal and 1-minute HI vapor reduction resulted in a WCA of approximately 101.33°.

The degree of reduction, indicated by the C/O ratio depicted in Fig. 2 (c), confirms that rGO produced by combining hydrothermal treatment and an 8-minute HI reduction achieved the highest value of 6.81, compared to 2.98 for the single hydrothermal process.

4.2. Performance

Figure 3. Rejection and permeate flux in pervaporation tests for (a) GO and PGO membranes, and (b) rGO membranes with various reduction methods.

The combined hydrothermal process and 8-minute HI vapor reduction resulted in an impressive rejection rate of approximately **73%**. HI vapor effectively penetrates thinner membranes, further reducing oxygen groups. This creates a more hydrophobic rGO surface, enabling a smoother, frictionless flow of water vapor molecules through the membrane channels.

Conclusion 5

GO-based membranes with regulated graphitic structures were successfully fabricated using a combined reduction approach. The combination of hydrothermal treatment and 8 minutes of HI vapor reduction increased the C/O ratio to 6.81, supported by water contact angle measurements indicating a highly hydrophobic surface (101.33°). The d-spacing was reduced to 4.78 Å. Further research is needed to enhance performance, particularly improving the separation factor of the membranes while maintaining permeate flux.

Acknowledgement

6

would like to express my sincere gratitude to my daily supervisor, Dr. Farhad Moghadam, for his unwavering support and guidance throughout this project. Finally, I extend my heartfelt thanks to Professor Kang Li for his invaluable support and insightful advice.

REFERENCES:

[1] Castro-Muñoz, 2023. Separation and Purification Technology 308, 122919. [2] Huang, H.-J., 2013. John Wiley & Sons, Ltd, pp. 1–36.

[3] Zheng, S., 2017. ACS Nano 11, 6440–6450. [4] Yu, 2017. 2D Mater. 4, 045006.