

Machine Learning and Hybrid Modelling of Particle Breakage in a Jet Mill

Carl Jackson

Johnson

Matthey

About Us

Carl Jackson
Senior Digital Chemical Engineer
Core Capabilities
Group Technology
Johnson Matthey

Mingzhe Yu PhD
Senior Solids Engineer
Core Capabilities
Group Technology
Johnson Matthey

Johnson Matthey

Johnson Matthey

A global leader in advanced materials and sustainable technologies, established in 1817 and listed on the London Stock Exchange as a constituent of the FTSE 250 Index.

Energy

Designing technologies of sustainable energy sources, including hydrogen, sustainable aviation fuel, methanol and ammonia.

Chemicals

Process and catalysts technologies that enable the production of chemicals helping customers lower their carbon and environmental footprint.

Automotive

Emission control systems that reduce NO_x and other particulates that harm people and the environment.

Clean Catalyst Hydrogen Technologies* Air Technologies Leading in #1 in syngas-based Market leader in chemicals and fuels autocatalyst markets performance technology components for fuel cells and electrolysers Platinum Group Metal Services #1 Global PGM refiner

c. 80% PGMs used in our products are internally refined

Driving down automotive emissions

• Global leader in autocatalysts for diesel and gasoline vehicles

Market leader in high-performance components for hydrogen fuel cells

Agenda

Background

Population Balance Models and Hybrid Modelling

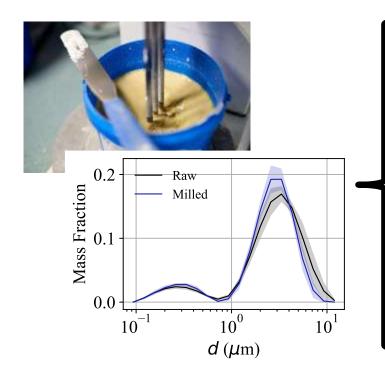
Method

Model Performances and Predictions

Key Learnings

Questions

Importance of Particle Size Distributions

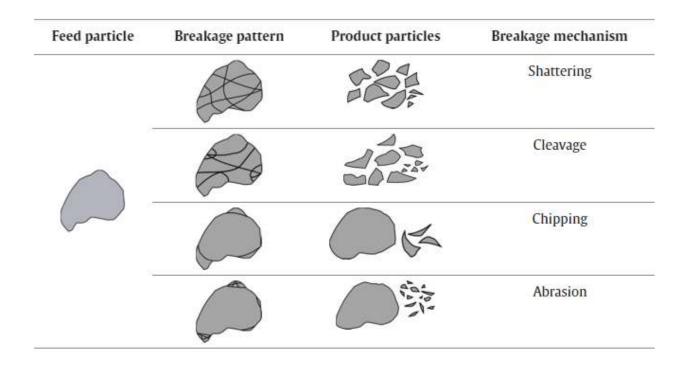


Both product performance and manufacturing capability are sensitive to PSD

Motivations for modelling

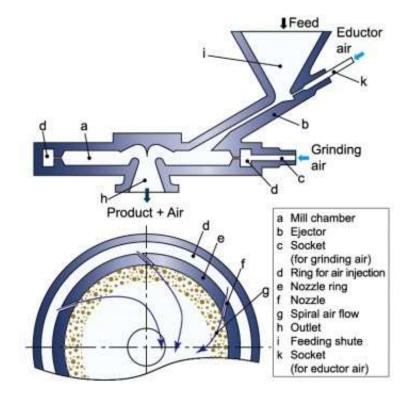
- 1. Reduce trial and error of mill settings
 - At scale->material wastage and time
- 2. Model to inform toll manufacturers
- 3. Troubleshooting

Jet Mills



Wet Mill

Dry Mill

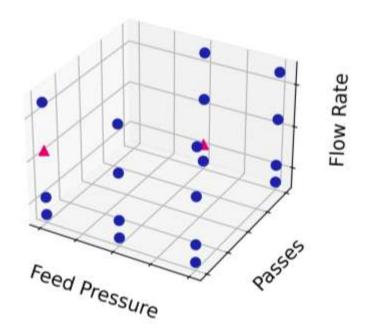


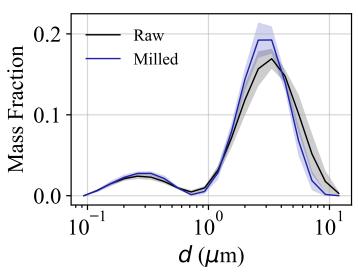
Hosokawa jet mill [1]

Dataset

Features	
Initial PSD	Average of 3 measurements 30 bins
Feed pressure	Pressure going into the mill. Grind pressure is always 80% of feed pressure
Feed rate	Mass feed rate into the mill
Run duration	Duration of the batch
Number of passes	Passes through the mill previously. 1-3

Targets	
Product PSD	Average of 3 measurements 30 bins
Yield	Mass of product relative to feed. Typically 75-90%

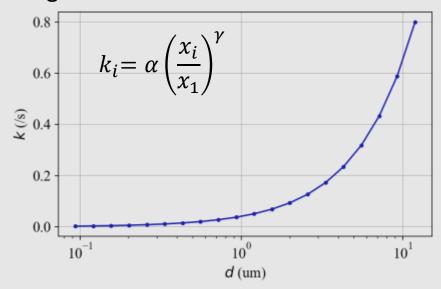




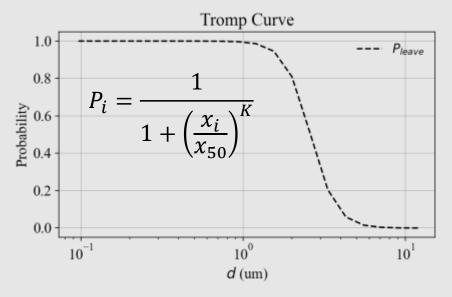
Population Balance Model (PBM)

$$\frac{dm_i}{dt} = f_{in,i}\dot{m} - \frac{P_i m_i}{\tau} - k_i m_i + \sum_{j=1}^i b_{ij} k_j m_j$$
 Chamber In Out Death Birth

Breakage rate



Classification function

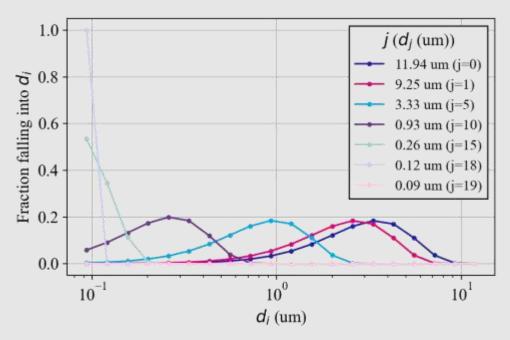


Population Balance Model (PBM)

$$\frac{dm_i}{dt} = f_{in,i}\dot{m} - \frac{P_im_i}{\tau} - k_im_i + \sum_{j=1}^i b_{ij}k_jm_j$$
 Chamber In Out Death Birth

Breakage distribution function

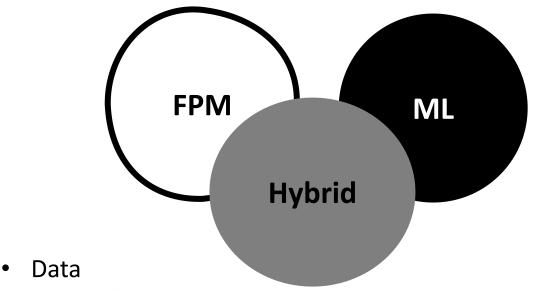
$$b_{ij} = \left(\frac{x_i}{x_j}\right)^{\beta} \left(1 - \frac{x_i}{x_j}\right)^q$$
...
$$i = n$$
...
$$0$$
...
$$0$$
...
$$0$$
...
$$0$$
...
$$0$$
...



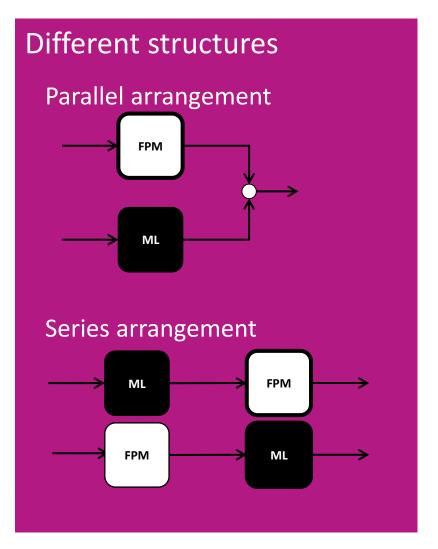
Hybrid models

Consists of 2 parts...

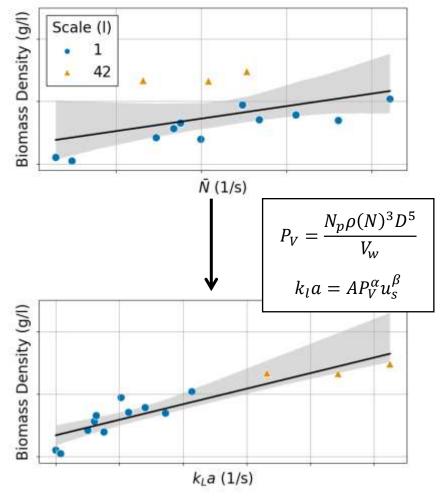
- 1. First principles model (mechanistic, white-box model)
- 2. ML model (data-driven, black-box model)



- Extrapolation
- General performance
- Time/expertise to develop



Hybrid models



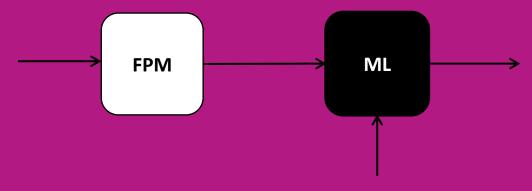
Small fermentation dataset across different scales

"Which phenomena are important for biomass density (yield)?"

Oxygen mass transfer

 More bugs → More oxygen uptake → More agitation to maintain DO₂

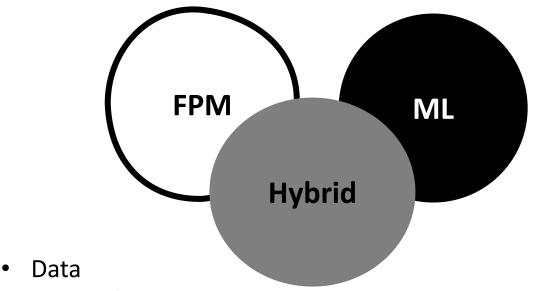
Derive a soft-sensor for final fermentation batch yield across multiple scales



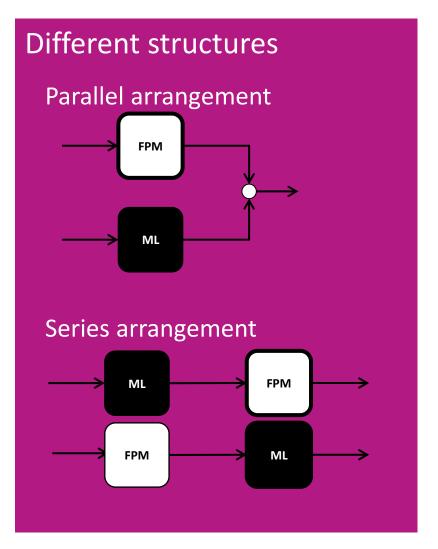
Hybrid models

Consists of 2 parts...

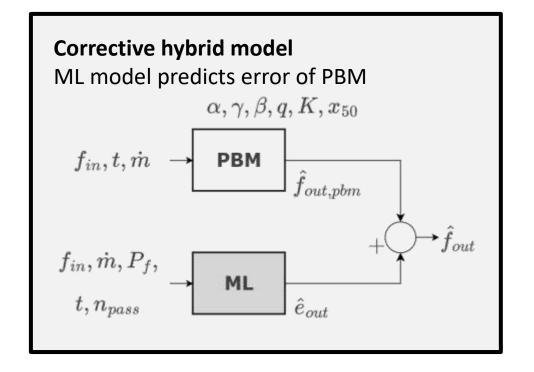
- 1. First principles model (mechanistic, white-box model)
- 2. ML model (data-driven, black-box model)



- Extrapolation
- General performance
- Time/expertise to develop



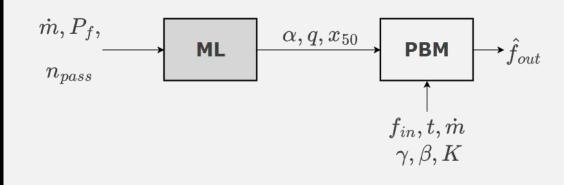
Model Architectures



Series hybrid model

ML model predicts parameters of the PBM

- α (overall breakage intensity / selection severity)
- x_{50} (classification cut size)
- q (fine tail)



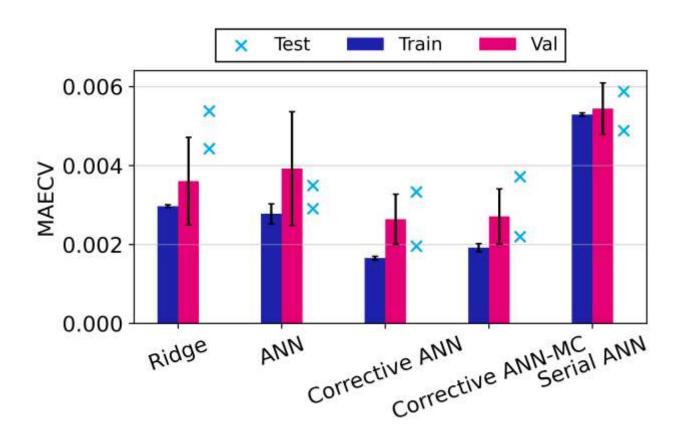
Model Evaluation and Optimisation

Hyperparameters of each model optimised using OptunaTM [2]

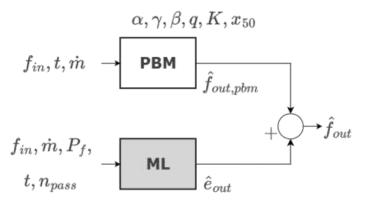
Loss metric is mean absolute error (MAE) between true and predicted PSD



Results

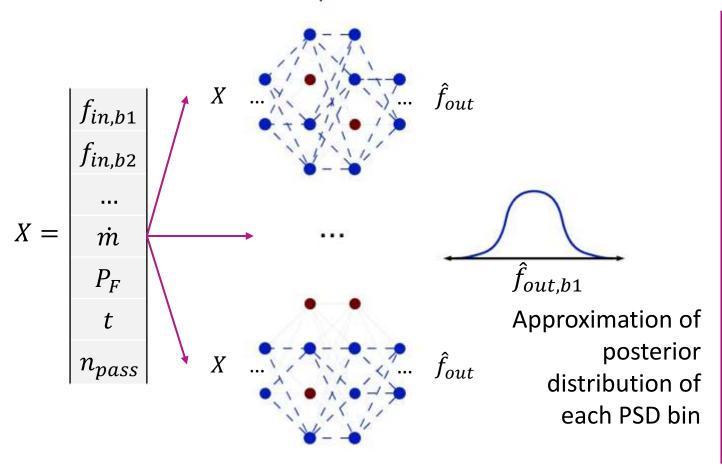


$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{P} w^2$$

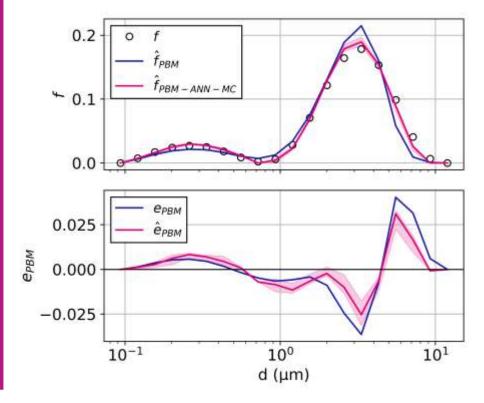


Results

Monte Carlo Dropout Neural Network

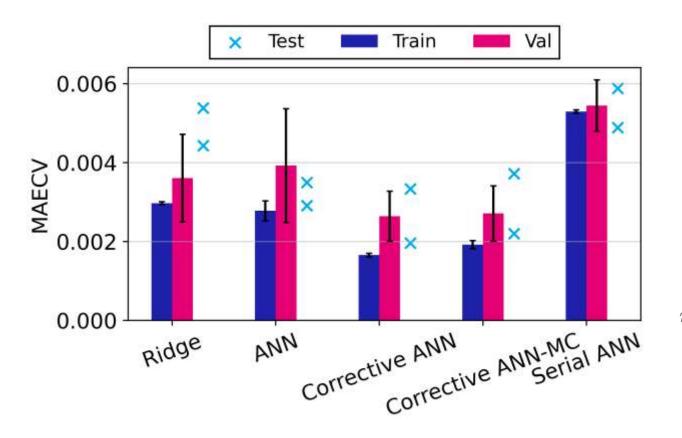


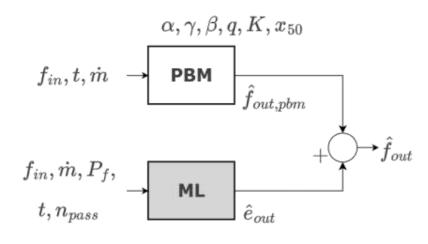
Corrective ANN-MC performance on test experiment

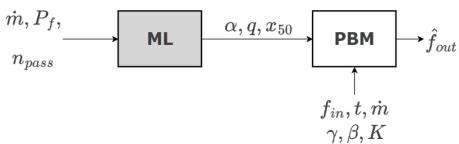


Results

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{P} w^2$$







Key Learnings

• A bad analogy of inductive bias in hybrid modelling

Imagine you're cooking from a recipe...

Which will produce the best dish:

- **a. Strictly** follow a recipe
- **b.** Minor deviations from the recipe
- **c. Major deviations** from the recipe

Depends on:

- Quality of the recipe
 - Quality of the first-principles model
- Your past experiences and skill as a chef
 - Quantity and quality of the data

Key Learnings

Pros

Cons

Model performance

Less data

Model interpretability

Extrapolation capability

Negative inductive bias

Productionability

Development/t raining time

Conclusions

Corrective hybrid modelling has been beneficial in predicting milled product PSD Series hybrid modelling...not so much

- Negative inductive bias owing to the challenges of PBMs Corrective hybrid models with Monte Carlo neural nets show equal performance and provide CI
- But longer inference times make it impractical for series hybrid modelling

Considerations for future hybrid modelling work

- Revisit PBM
- Hybrid model structure
 - How confident are you in the first-principles model?
 - Are all of the likely phenomena captured?
 - Optimise the hybrid architecture
- What are the requirements for implementing into production

Johnson Matthey Inspiring science, enhancing life

Carl Jackson
Senior Digital Chemical Engineer
Core Capabilities
Group Technology
carl.jackson@matthey.com

Mingzhe Yu PhD
Senior Solids Engineer
Core Capabilities
Group Technology
mingzhe.yu@matthey.com

Acknowledgments

- Hugh Stitt
- Robert Gallen
- Li Liu

Johnson Matthey