TOWARD TRANSPARENT DECISION SUPPORT: BUILDING FULLY INTEGRATED DIGITAL TWIN FOR REFINERY OPERATIONS

<u>Balázs Palotai</u> ^{a,b*}, Gábor Kis ^a, László Grad-Gyenge ^c, Zoltán Máthé ^d, Tibor Chován ^b, Ágnes Bárkányi ^b

- a Group Downstream Production and Technology, MOL Group Plc, Hungary
- b Department of Process Engineering, University of Pannonia, Hungary
- c Creo Group, Hungary
- d Emerson, Hungary

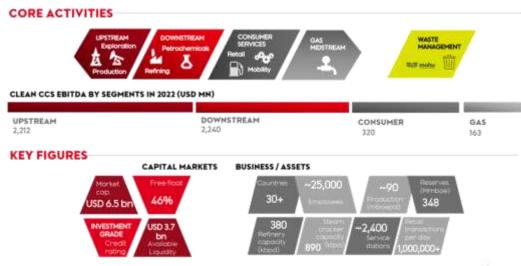
16-17 October 2025 - Manchester UK - Advances 2025

MOL GROUP IN BRIEF

INTEGRATED DOWNSTREAM IN CEE

PRODUCTION UNITS

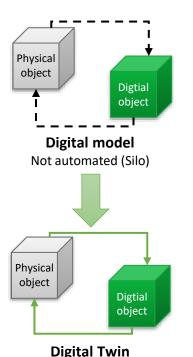
20.9 mtpa REFINING AND2.2 mtpa PETROCHEMICALSCAPACITY


15.000

SERVICE STATIONS

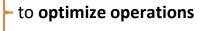
~1.900

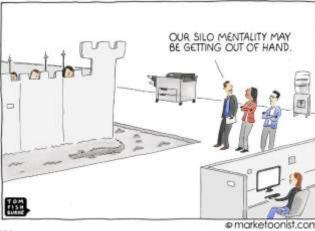
IN 10 COUNTRIES



WHY - DIGITAL TWIN (DT)

A Digital Twin:


- cyber-physical integration by which data can be collected, analyzed, and visualized
- to make more informed decisions



Fully integrated

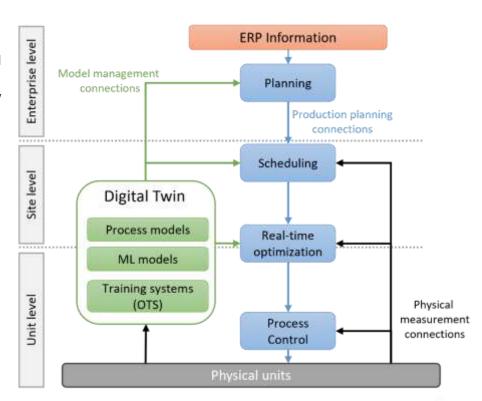
Separate models with different scope

- Simulation models,
- Energy prediction, monitoring,
- Quality prediction,
- Crude selection,
- Anomaly detection, etc..
- Model generation ad-hoc, problem driven
- Models **not integrated** into one eco-system
- Models' health are not monitored -> missing continues maintenance, version control
- Simulation models are available only for a narrow group

A faster and continuous response to business needs could increase profitability by transitioning from siloed digital models to an integrated Digital Twin

RTO OR DIGITAL TWIN? WHAT'S THE DIFFERENCE?

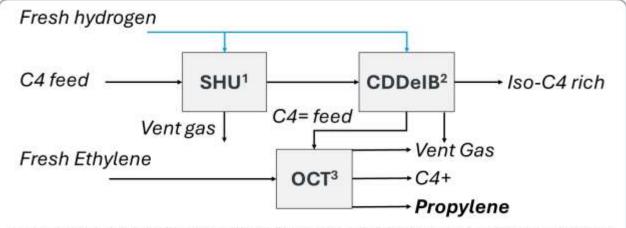
RTO

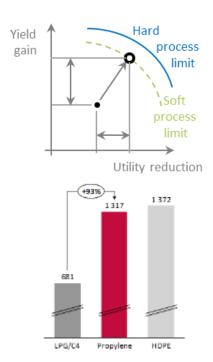

- Dynamic process control Continuously adjusts operational parameters to optimize the performance
- Aim: move the system towards optimum, given current boundary conditions

Digital Twin

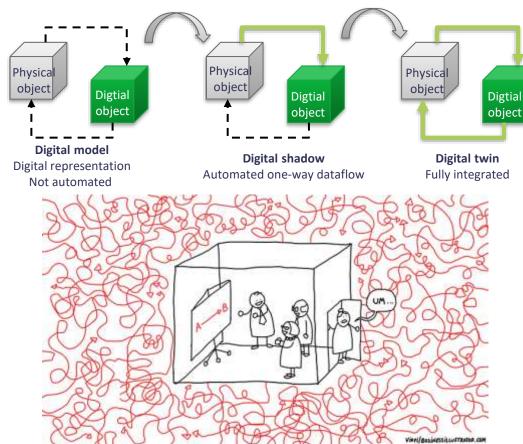
- High-fidelity virtual model of a physical process
- Integrates available process information ("White Box")
- Can simulate various scenarios to analyze the impact of changes, such as variations in catalyst activity or feedstock quality.

Objective:

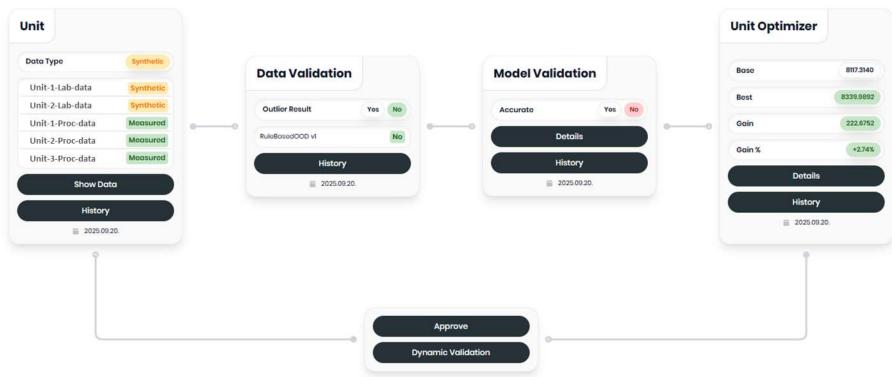

- RTO: Focuses on continuously optimizing the current process in real-time to achieve the best performance under existing conditions.
- Digital Twin: Aims to provide a virtual environment for testing and analysis, allowing for the exploration of various scenarios and their impacts without disturbing the actual process.


USE-CASE OLEFIN CONVERSION UNIT (OCU)

Metathesis of 2-Butene and Ethene:


$$C_4H_8 + C_2H_4 \rightarrow 2C_3H_6$$

- 1) Selective Hydrogenation Unit: Selectively hydrogenates butadiene and C4 acetylenes
- 2) Deisobutenizer: Reactive distillation to maximize C4= yield and remove iso-butene
- 3) Olefins Conversion Technology: Converts C4= and ethylene into propylene


MOVING TOWARDS DIGITAL TWIN SEEMS TO BE SIMPLE...

Challenges

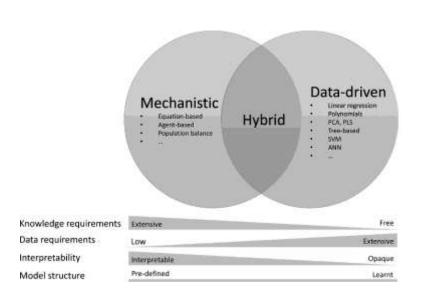
- Real-time automated connection adds excessive system complexity.
- Multi-model integration (first-principles + ML).
- Model management monitoring, continuous calibration, and version control.
- Poor data quality → poor model output.
- Siloed models instead of multi-purpose use.
- Weak/missing validation.
- Low trust caused by complex and hard-to-interpret solutions.

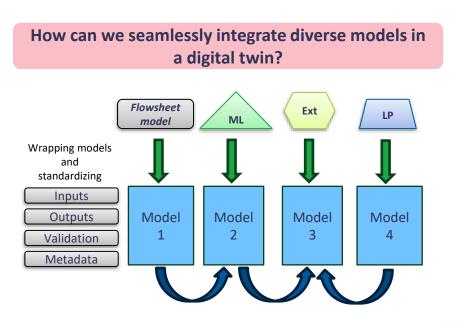
KEY ELEMENTS OF DEVELOPED FULLY INTEGRATED DIGITAL TWIN **FRAMEWORK**

DATA VALIDATION & INTEGRATION

Reliable decisions require trusted data:

- Filter by operating range apply models only where they are valid.
- Validate data remove outliers, correct errors, ensure consistency.
- **Integrate sources** merge sensor, system, and database inputs.
- Harmonize align units, formats, and timestamps for clarity.
- Explain with visuals clearly show what was changed, removed, or corrected, and why.

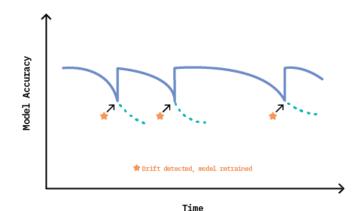



Poor quality or out-of-range data can lead to inaccurate results, limiting the model's effectiveness and compromising decision-making.

THE HEART OF A DIGITAL TWIN: MODELS

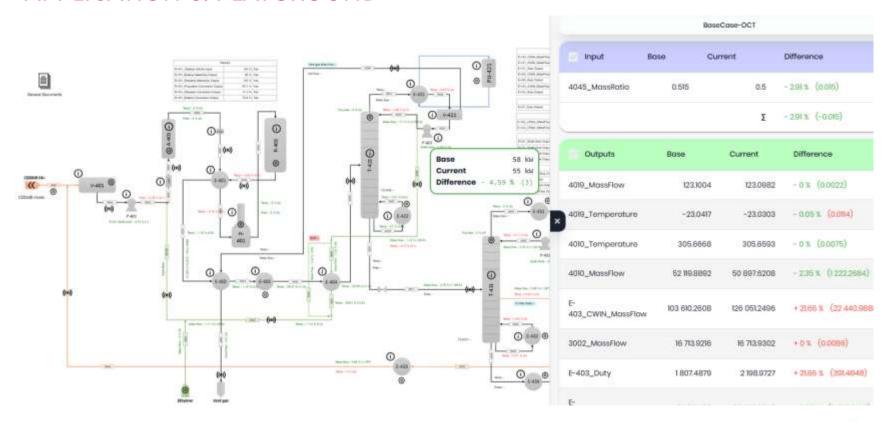
Within Digital Twin the model(s) can vary in type, level of detail, and granularity. These models:

- Simulate physical system behavior
- Coherent multi-layered view of the system (interconnectedness).

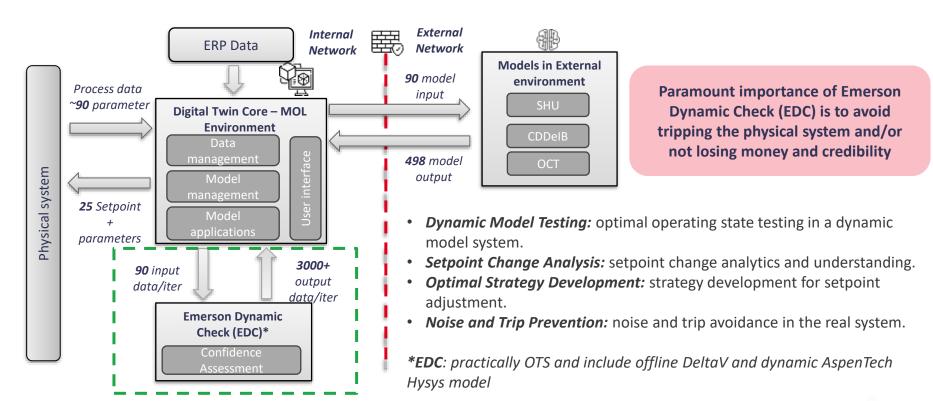

MODEL INTEGRATION & VALIDATION

Maintaining flowsheet model performance is critical as **real-world degradation occurs**. Online connectivity demands continuous monitoring and timely intervention when drift is detected.

- Clear ownership model changes are handled by subject-matter experts.
- Performance monitoring detect concept drift and degradation
- Online calibration use automated/semi-automated tuning to maintain accuracy.
- **Transparent validation** track and explain model performance before and during application.

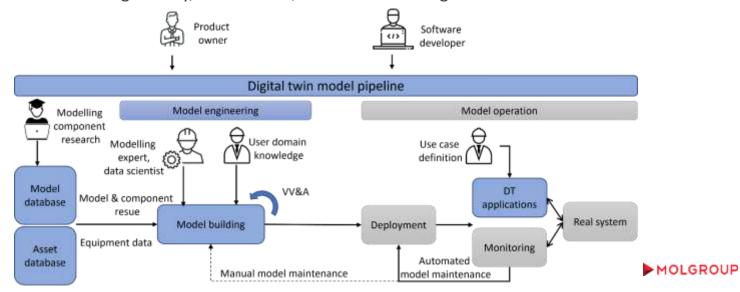

Model calibration:

- Balázs Palotai, Gábor Kis, János Abonyi, Ágnes Bárkányi, Surrogate-based flowsheet model maintenance for Digital Twins. Digital Chemical Engineering, 15, 100228. Elsevier, 2025
- Balázs Palotai, Gábor Kis, Tibor Chován, Ágnes Bárkányi, Online learning supported surrogate-based flowsheet model maintenance. Digital Chemical Engineering – Under review



		Time					
▼ Filter				Sequel		Show rokewant	
Attribute	Truse	Estimated	Aa	Se	Арке	Takerance	Accurati
C102FEEDTEMP	140.3	196.9	3.38	7,46	0.004	0.040	frue
Classedtew	8420	86.77	184	338	0.022	0.040	tru
C187GBPR00	20.07	2196	189	357	0.094	0300	tru
KBI-DESTRES-FINAL	163	249	0.858	0.738	0.625	0,000	tore
KBI-ICS-FINAL	0.49	11,71	0.224	0.050	8.00	0,500	trus
REF4REFORMATEPROD	10.50	HI50	0.000	0.000	0000	0.050	trus
REF4V61SIDEPRODUCT	2.02	210	0.100	0.026	0.080	0150	tru

APPLICATION & PLAYGROUND


IMPORTANCE OF DYNAMIC VALIDATION IN DIGITAL TWIN

SUMMARY

Clarity and explainability make **digital twins** trusted tools in refinery operations:

- Clear blocks show how each part works and connects.
- **Explained decisions** why data/models are valid, why optimizers choose a point.
- Robust validation ensure safety and operational feasibility.
- **Flexible use** optimization, ad-hoc analysis, advanced insights.
- **User trust** built through clarity, visualization, and realistic testing.

