Hydrogen Fuel and Approach to Decarbonisation – From Production to Consumption

HyNET update March 2019

Andy Brown, Engineering Director, Progressive Energy

- Introduction to Progressive Energy
- Decarbonising Heat
- The HyNET Project
- Conclusion

Company Overview: Progressive Energy

- A clean energy projects company formed in 1998
- Mission is to develop of a range of clean energy projects including electricity storage, renewable gas, grid conversion to hydrogen...
- Also provide advisory services to Government and commercial clients

Decarbonising heat: the problem

Decarbonising heat: the problem

Decarbonising heat: the conundrum

- Some Natural Gas applications, could be electrified (renewable), but not all, leaving a massive gap
- Hydrogen could be a suitable energy vector
- To demonstrate hydrogen as a viable substitute for Natural Gas for heating, we would need to produce hydrogen in bulk
- Natural Gas is the only suitable feedstock to make hydrogen
- Making hydrogen from Natural Gas produces CO₂, implying CCS
- There is no CCS infrastructure, because there is no hydrogen plant to produce the CO₂
- There is no 'home' for bulk hydrogen, so cannot produce it
- Without bulk hydrogen available, there is no market 'home'

Decarbonising heat: the conundrum

This is a real "chicken and egg" situation".

HyNET breaks the cycle.

The HyNet Project: concept

The HyNet Project: what it delivers

- A hydrogen production plant big enough to be "proof of commercial concept" and scalable
- An 'immediate' reduction in CO₂ emissions from 2½M people, without cost or inconvenience of any modification to existing appliances

100% methane

 $71.6\%\ CH_4/28.4\%\ H_2$

The HyNet Project: what it delivers

- A hydrogen production plant big enough to be "proof of commercial concept" and scalable
- An 'immediate' reduction in CO₂ emissions from 2½M people, without cost or inconvenience of any modification to existing appliances
- A route for industries to reduce CO₂ emissions, saving on ETS costs when 'low hanging fruit' measures have been done
- CCS infrastructure (can use existing CO₂ from CF Industries ammonia plant, offshore structures and ≈60km of NG pipeline)
- Opportunities to expand the hydrogen economy in the North West, e.g. road, rail and sea transport, power
- Opportunities for other industries in the area to export, rather than emit their CO₂

The HyNet Project: some engineering challenges

- Different combustion characteristics of Natural Gas and Hydrogen
 - Higher flame temperature (increased NOx formation, impingement damage)
 - Different Wobbe index (e.g. CV changes affect metering)
 - \circ Lower ignition energy
 - Higher flame speed
 - Mixture limits for existing equipment
 e.g.domestic, spark ignition engines, kilns
- Design of hydrogen production plant with CCS
- Engineering of CO₂ and hydrogen pipelines

BEIS Programmes

Department for Business, Energy & Industrial Strategy

- •Fuel Switching
- •Fuel Switching
- HyDeploy & Fuel SwitchingHyDeploy & Fuel SwitchingHyDeploy & Fuel Switching
- •CCuS programme
- •CCuS programme & H₂ supply

The HyNet Project: enabling the vision

The HyNet Project: enabling the vision

Hydrogen Fuel and Approach to Decarbonisation – From Production to Consumption

Conclusion: HyNET NW <u>is</u> a project that demonstrates Hydrogen Fuel and Decarbonisation – From Production to Consumption

Any questions?