World Scale Hydrogen Production

Presentation by

Dr Vince White

Senior Research Associate

Air Products

Hersham Place Technology Park

Molesey Road - Walton-on-Thames - UK

IMechE/IChemE Evening Seminar: 2019 Hydrogen event Birdcage Walk, 7th March

Agenda

- Air Products
- Hydrogen production from Steam Methane Reformers (SMRs)
- CO₂ capture from SMRs
 - Options and Port Arthur Project
- Autothermal Reformers (ATRs) and Gas Heated Reformers (GHRs)
- Gasification
- Hydrogen Pipelines
- Vehicle Fuelling

Air Products Today

\$8.9 billion in sales

~16,000 employees

50+ countries

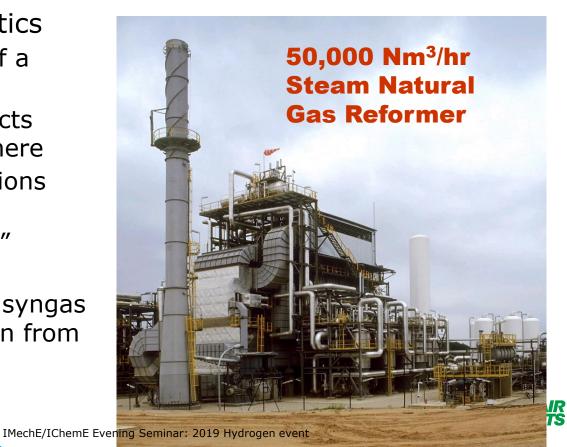
~\$35B market cap

7+ decades in business

170,000+ customers

1,800 miles of industrial gas pipeline

750+ production facilities

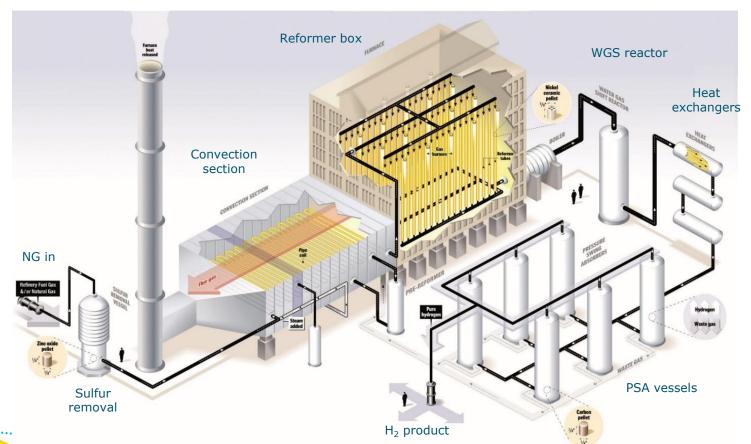

30+ industries served

Production of Hydrogen 1 - SMR

Process Characteristics

- External heating of a catalytic reactor
- Combustion products vented to atmosphere
- 40% of CO₂ emissions from combustion
- 60% from "shifted" syngas
- CO₂ removal from syngas less expensive than from flue gas

Air Products builds and operates hydrogen plants of all sizes, from <1 kNm³/h to >170 kNm³/h, tied to pipelines or as standalone "on-site" facilities



SMR schematic

Decarbonised Hydrogen: CO₂ removal from SMR – 3 options

Table 1: Levelised Cost of H₂ (LCOH), CO₂ Avoidance Cost and Overall CO₂ Capture Rate (IEAGHG, Techno-Economic Evaluation of SMR Based Standalone (Merchant) Hydrogen Plant with CCS. Technical Report 2017-02, 2017)

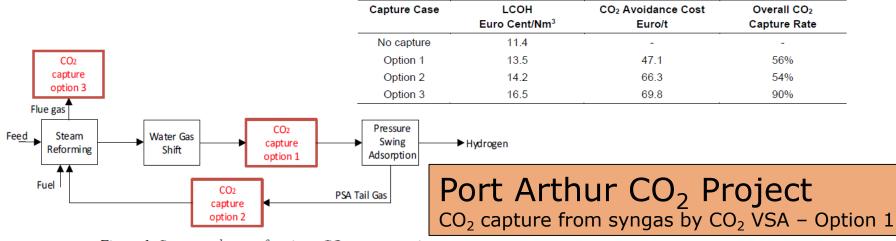
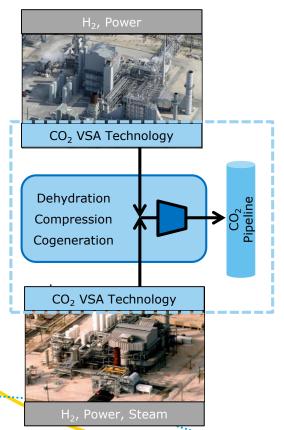
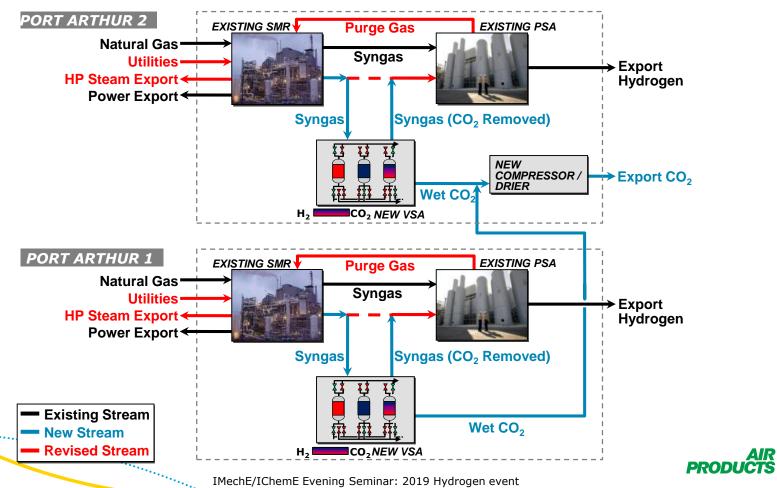



Figure 1: Steam methane reforming - CO₂ capture options

Air Products' Port Arthur CO₂ Project


New technology to recover anthropogenic CO₂ for EOR

- Retrofit of 2 Steam-Methane Reformers (SMR) located in the middle of a refinery
- Capture and purification of CO₂ from hydrogen plants (see previous slide "Option 1") for EOR
- Technology developed by Air Products
- 90%+ capture of CO₂ from syngas
- ~2600 t/d (50 MMSCFD) of CO₂ to Denbury's Green Pipeline for West Hastings oilfield
- 30 MWe cogeneration unit to generate power and make-up steam
- Full capacity achieved April 2013
 - 1x10⁶ tonnes of CO₂ captured by April 2014
 - 4x10⁶ tonnes of CO₂ captured by Oct 2017

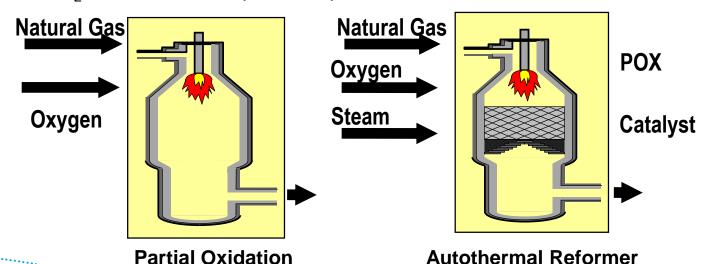
Simplified CO₂ Capture Block Flow Diagram


Key Project Components

Capturing CO₂ for Denbury's "Green Pipeline"

- Vacuum swing adsorption (VSA) vessels
- Tri-ethylene glycol (TEG) drier system
- CO₂ export compressor

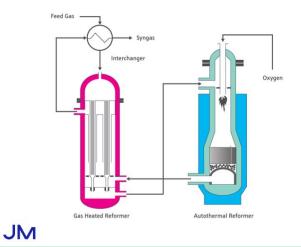
10


- 8 stages
- Export pressure over 2000 psig (~140 bar)
- 13 mile (21 km) CO₂ Pipeline connecting to Denbury's "Green" 300+ Mile (~500 km) CO₂ Pipeline

Production of Hydrogen 2 – POX & ATR

Process Characteristics

- Pressurised reactors with heat supplied by direct reaction with oxygen
- No venting of combustion products
- All CO₂ available for capture at pressure



PRODUCTS 1

Johnson
Matthey's
ATR/GHR
improves on ATR
by using high
temperature
H₂/CO/CO₂
syngas to heat a
convective
reformer

Advanced Steam Reforming – Leading Concept Hydrogen

- Low methane in product gas which lowers CO₂ emissions
- Low CO slip exit shift which lowers CO₂ emissions
- CO₂ captured from process at pressure so CO₂ removal system is well proven and cheap

- Highest Efficiency Lowest Cap Ex
- Lowest Levelised Cost of H₂
- Lowest Nat Gas usage per unit H₂
- Lowest amount of CO₂ produced per unit H₂
- Proven at scale in Methanol
- Advantageous to couple with Renewable Electricity generation as no steam is generated

source: Johnson Matthey

Johnson Matthey's comparison of levelized cost of hydrogen, with 95% CO₂ capture

Cost of H₂ at 95% capture equivalent to just capturing process CO₂ from SMR, 56% capture

P arameter	Units	SMR Flowsheet	ATR Flowsheet	LCH Flowsheet
Natural Gas as Feed	kNm³/hr	39.74	41.22	38.31
Natural Gas as Fuel	kNm³/hr	5.36	0.19	0
Total Natural Gas	kNm³/hr	45.10	41.41	38.31
Natural Gas Energy	MW	439	432	400
Hydrogen Production	kNm³/hr	107.4	107.4	107.4
Hydrogen Energy	MW	322	322	322
Natural Gas Efficiency	%	73.3	74.5	80.6
CO2 Captured	mt/hr	83.7	83.6	76.3
CO2 Emitted	mt/hr	4.4	3.1	3.7
CO2 Captured	%	95	96.4	95.4
CAPEX	£Μ	260	195	160
LCOH	£/kNm³	165.8	137.6	128.3

JM

source: Johnson Matthey Euro 18.9 15.7 14.5 Cent/Nm³

Gasification

\$2B

2019

Lu'An

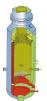
\$1.5B 2018

2010

for China coal

gasification

Executing our gasification strategy Energy, environmental, emerging markets



......

Benefits of Gasification A versatile and mature technology

- Gasification technology has been in use since the 1800s
 - Widely used to produce transportation fuel due to petroleum shortage in WWII
- Adaptable to various hydrocarbon feedstocks
 - Coal, petcoke, oil residue, natural gas, and others
- Utilizes natural resources available
- Diverse applications / end products
 - Syngas for power generation and chemicals
 - H₂ for refineries
 - CO for chemicals
- Sustainability
 - No smog-causing particulates
 - Concentrated, capture-ready CO₂ stream
 - Sulfur removal allows the use of high sulfur coal
- · Low incremental operating cost
- Economical in low oil price environment

Hydrogen Fueling

- Unique product offerings for H₂ fueling
- Projects since 1993
 - 225 hydrogen station projects
 - 1,500,000 fuellings/yr
 - ~7 million fuellings total
 - Stations in 20 countries
 - 50+ patents
 - SAE J2601 Fueling Standard based on AP technology

IMechE/IChemE Evening Seminar: 2019 Hydrogen event

Hydrogen

Summary

- Large scale hydrogen production from steam methane reforming is widely practised
- CO₂ capture from SMRs is possible and demonstrated, but ATRs are better suited to high levels of CO₂ capture
- Piping hydrogen is well understood: 100s miles of hydrogen pipelines around the world, connecting dozens of hydrogen plants with many customers
- Gasification (of bottom of the barrel, petcoke, coal) could play a part in a hydrogen-with-CO₂-capture world, even in the UK

Thank you tell me more

